
Analyzing CrackMe2 with String
Decryption

Objective: Learn to analyze a CrackMe challenge with obfuscated strings by using breakpoints
to observe runtime decryption, then identify and bypass the password validation logic.

Introduction: What Makes This CrackMe Different?
Unlike CrackMe1, which had plaintext strings, CrackMe2 uses string obfuscation. This
means:

●​ Strings are encrypted in the executable
●​ They are decrypted at runtime (when the program runs)
●​ We cannot find password messages by simply searching for strings
●​ We must observe the program's behavior dynamically

Why do programs obfuscate strings?

●​ Hide functionality from static analysis
●​ Prevent detection by antivirus
●​ Protect intellectual property
●​ Make reverse engineering more difficult

Step 1: Load the Executable into the Debugger

Instructions:

1.​ Open your debugger (x32dbg or OllyDbg)
2.​ Load CrackMe2.exe:

○​ File → Open
○​ Navigate to the CrackMe2.exe file
○​ Click Open

3.​ Observe the initial state:
○​ The debugger pauses at the system initialization code
○​ Notice the title bar displays "Module: ntdll.dll"

What you're seeing: The Windows system loader (ntdll.dll) preparing the program to run. This
is not the actual program code yet.

Step 2: Navigate to the Program Entry Point

Instructions:

1.​ Run to the Address of Entry Point (AEP):
○​ Press F9 (or click the blue Run button ▶)
○​ The debugger will execute through system initialization
○​ Execution will pause at the program's first instruction

2.​ Verify you're at the correct location:
○​ Check the title bar: It should now show "Module: CrackMe2.exe" (or similar)
○​ The CPU view should display the program's actual code

Important: The "Module:" section changing from "ntdll.dll" to "CrackMe2.exe" confirms you're
now analyzing the actual program, not Windows system code.

Step 3: Search for Strings

Instructions:

1.​ Open the strings window:
○​ While at the Address of Entry Point, press Shift+D
○​ Alternative: Right-click → Search for → String references
○​ A window will appear showing all strings found in the executable

2.​ Observe the strings:
○​ You'll notice many strings appear obfuscated or encrypted
○​ These are NOT readable text - they're encrypted!

3.​ What you WON'T find:
○​ Clear messages like "Correct password!" or "Access denied!"
○​ Obvious validation logic
○​ Readable error messages

Why strings are obfuscated: The program encrypts strings at compile time and decrypts them
at runtime. This prevents analysts from finding interesting code by searching for obvious strings.

Since we cannot identify interesting strings by reading them, we need a different approach:
observe the program decrypt them at runtime.

Step 4: Strategic Breakpoint Placement

The Strategy:

Since we don't know which strings are important, we'll:

1.​ Set breakpoints on unique encrypted strings
2.​ Run the program and let it hit each breakpoint
3.​ Observe if the string gets decrypted
4.​ Identify what the decrypted string reveals

Instructions:

1.​ In the strings window (Shift+D):
○​ Identify unique encrypted strings (avoid duplicates)
○​ Select diverse strings from different parts of the program

2.​ Set breakpoints on strings: Method A - From the strings window:
○​ Double-click on an encrypted string
○​ This takes you to where that string is referenced in the code
○​ Press F2 to set a breakpoint at that location
○​ The line will be highlighted (usually red)

3.​ Method B - Right-click method:
○​ Right-click on the string reference
○​ Select "Toggle Breakpoint" or "Set Breakpoint"

Step 5: Execute to First Breakpoint

Instructions:

1.​ Run the program:
○​ Press F9 (Run)
○​ The program will execute until it hits your first breakpoint

2.​ The program window may appear:
○​ The CrackMe2 GUI might display
○​ It may prompt for a password
○​ I have entered 123 as a password

3.​ Execution pauses at first breakpoint:
○​ The debugger stops at the first string reference you marked
○​ The highlighted line shows where you are in the code

4.​ Observe the encrypted string:
○​ Look at the string at this location
○​ Note that it's still encrypted/obfuscated
○​ Example: "N@@SSS\/H]NA[JK."

It seems the function between our previous string breakpoint and our current one,
crackme2.40151B, decrypted the string

From this, we can see that the encrypted text, “NLLJ\\\\/H]NA[JK.” was actually “ACCESS
GRANTED!” Perfect.

Step 6: Analyze the Password Validation Logic

Once the initial strings are decoded, a comparison operation is performed, checking the
character count of what the user inputted as the password with the hex value ‘B’, 11 in decimal

We can bypass this by changing the ZF to 1, where the code then thinks that the password
passed the verification and then passes the Access Granted output onto the Dialog box

Next, we see the JNE instruction, which will determine which sentence will be printed

Same step, change the ZF to 1 to prevent the jump

At this point, click the run again, and you will see the message ACCESS GRANTED.

	Analyzing CrackMe2 with String Decryption
	Introduction: What Makes This CrackMe Different?
	Step 1: Load the Executable into the Debugger
	Step 2: Navigate to the Program Entry Point
	Instructions:

	Step 3: Search for Strings
	Instructions:

	Step 4: Strategic Breakpoint Placement
	The Strategy:
	Instructions:

	Step 5: Execute to First Breakpoint
	Instructions:

	Step 6: Analyze the Password Validation Logic

