
Steps to Patch CrackMe1 Executable

Objective: Learn to bypass password validation in a simple executable by identifying and
patching conditional jump instructions using a debugger.

●​ Open your debugger (x32dbg or OllyDbg)
●​ Load the sample:

○​ File → Open (or drag and drop CrackMe1.exe)
●​ Observe the initial state:

○​ Notice the title bar shows "Module: ntdll.dll" instead of the actual program
○​ This is because the debugger pauses at the system loader, not the program's

entry point

Why this matters: The system loader (ntdll.dll) is Windows' internal code that prepares
programs to run. We need to let this complete to reach the actual program code.

Step 2: Navigate to the Program Entry Point

Instructions:

1.​ Run to the program's actual entry point:
○​ Press F9 (or click the blue Run button ▶)
○​ The debugger will execute through system initialization and pause at the

program's first instruction
2.​ Verify you're at the correct location:

○​ The title bar should now show "Module: CrackMe1.exe"
○​ You should see the program's actual code, not system libraries

What just happened: You allowed Windows to finish loading the program, and now you're at
the Address of Entry Point (AEP) where the actual program code begins.

Step 3: Search for Interesting Strings

Instructions:

1.​ Open the string reference search:
○​ Right-click anywhere in the CPU window
○​ Select "Search for" → "Current Module" → "String references"

2.​ Analyze the strings list:
○​ Look for strings that suggest password validation:

■​ "Correct password"
■​ "Wrong password"
■​ "Access granted"
■​ "Access denied"
■​ Any other success/failure messages

3.​ Select a promising string:
○​ Double-click on a string that seems related to the password check
○​ This will take you to the code location where that string is referenced

Why strings matter: Password validation routines typically display messages to the user.
Finding these messages leads us directly to the validation logic we want to bypass.

Once you double-click a string, you'll be taken to the CPU disassembly view showing the code
that uses that string.

What to look for:

●​ The code surrounding the string reference
●​ Comparison instructions (CMP, TEST)
●​ Conditional jump instructions (JE, JNE, JZ, JNZ)

Step 5: Set a Breakpoint

Instructions:

1.​ Identify the key instruction:
○​ Find the conditional jump (JNE, JZ, etc.) that determines success or failure
○​ This is typically right after a comparison instruction

2.​ Set a breakpoint:
○​ Click on the instruction you want to break at
○​ Press F2 (or click in the left margin)
○​ The instruction line should be highlighted (usually red or a different color)

Why set a breakpoint: This allows you to pause execution at the critical decision point so you
can observe the program's behavior before patching.

Step 6: Execute Line by Line

Instructions:

1.​ Run to the breakpoint:
○​ Press F9 to run the program
○​ The program window will appear asking for a password
○​ Enter any password (even a wrong one like "test123")
○​ Execution will pause at your breakpoint

2.​ Step through the code:
○​ Press F8 (Step Over) or click the "Step Over" button
○​ Watch the instruction pointer move line by line
○​ Observe which path the code takes after the jump

What to observe:

●​ Before the jump: Check the flags register (especially ZF - Zero Flag)
●​ The jump instruction (e.g., JNE 00401234)
●​ Whether the jump is taken (wrong password path) or not taken (correct password path)

Understanding the Jump Instruction:

Common jump instructions:

●​ JE / JZ - Jump if Equal / Jump if Zero

●​ JNE / JNZ - Jump if Not Equal / Jump if Not Zero
●​ JA - Jump if Above
●​ JB - Jump if Below

In this case, you'll likely see JNE (Jump if Not Equal), which means:

●​ If the password is wrong → jump to error message
●​ If the password is correct → continue to success message

We can see the JNE opcode, which will make the jump based on whether the entered password
is true or not. This will be determined based on the comparison instruction in the line before the
jump

Step 7: Patch the Jump Instruction

Instructions:

1.​ Position at the jump instruction:
○​ Click on the line containing JNE (or similar conditional jump)

2.​ Open the assembly editor:
○​ Press Space bar
○​ An "Assemble at offset" window will appear

3.​ Change the instruction:
○​ Original: JNE xyz (Jump if Not Equal)
○​ Type: NOP (No Operation)
○​ Check the box: "Keep Size" (very important!)
○​ Click OK

Why "Keep Size"? The JNE instruction is 2 bytes (opcode 75 XX). When you replace it with
NOP, the debugger will use two NOP instructions (90 90) to maintain the same size. This
prevents breaking the program's structure.

You can see now that the instruction changed to 90, which is NOP (Do nothing)

Right-click and select the Patches option

Now the program will never jump to the "wrong password" code, regardless of what you enter!

Step 8: Review Your Patches

Instructions:

1.​ Open the patches window:
○​ Right-click anywhere in the CPU window
○​ Select "Patches"

2.​ Verify the patch:
○​ You should see your modification listed

3.​ Select patches to apply:
○​ If you made multiple patches, click "Select All"
○​ If only one patch, it should already be selected

Step 9: Save the Patched File

Instructions:

1.​ Apply patches to file:
○​ Click the "Patch File" button in the Patches window

2.​ Choose save location:
○​ A "Save As" dialog will appear
○​ Recommended naming: Add a suffix to indicate it's patched

■​ Original: CrackMe1.exe
■​ Patched: CrackMe1_patched.exe or CrackMe1_p.exe

3.​ Confirm success:
○​ You should see a message: "Patching was successful" or similar
○​ Click OK

Important: The original file remains unchanged. You now have two versions:

●​ ✅ CrackMe1.exe - Original (still checks password)
●​ ✅ CrackMe1_patched.exe - Modified (bypasses password check)

I saved my file as crackme1_p.exe

Open a command line and run the patched file

Enter any password, even a wrong one, and it should work!

Lab Questions & Analysis

Question 1: Understanding the Patch

Q: Why did replacing JNE with NOP bypass the password check?

A: The JNE instruction jumps to the "wrong password" code path when the comparison fails. By
replacing it with NOP (No Operation), the program never takes that jump and always continues
to the "correct password" code path.

Question 2: Alternative Patches

Q: What other ways could you patch this program to achieve the same result?

Possible answers:

●​ Change JNE to JE (invert the condition)
●​ Change JNE to JMP to always jump to the success path
●​ Modify the comparison instruction to force a successful comparison
●​ Patch the string to change "Wrong" to "Correct"

Question 3: Detection and Prevention

Q: How might a programmer prevent this type of patching?

Possible answers:

●​ Code integrity checks (checksum/hash verification)
●​ Anti-debugging techniques
●​ Code obfuscation
●​ Encrypted/packed executables
●​ Server-side validation
●​ Multiple validation checks throughout the code

	Steps to Patch CrackMe1 Executable
	Step 2: Navigate to the Program Entry Point
	Instructions:

	Step 3: Search for Interesting Strings
	Instructions:

	Step 5: Set a Breakpoint
	Instructions:

	Step 6: Execute Line by Line
	Instructions:
	Understanding the Jump Instruction:

	Step 7: Patch the Jump Instruction
	Instructions:

	Step 8: Review Your Patches
	Instructions:

	Step 9: Save the Patched File
	Instructions:

	Lab Questions & Analysis
	Question 1: Understanding the Patch
	Question 2: Alternative Patches
	Question 3: Detection and Prevention

