5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator

mecceueraco M I AN T A

Linux Other Reverse Engineering

Linux Rootkits Part 1: Introduction and Workflow

#linux #rootkit

Learning about Linux rootkits 1s a great way to learn more about how
the kernel works. What's great about it is that, unless you really
understand what the kernel is doing, your rootkit is unlikely to work,
so 1t serves as a fantasic verifier.

In the FreeBSD world, you can find Joseph Kong's amazing book Designing

BSD Rootkits. It was written in 2009, so 1s actually pretty outdated -
which means that you have to do quite a bit of research to get the

sample progras to work on modern FreeBSD. This learning experience was
invaluable in learning about kernel rootkits, but sadly the Linux
kernel isn’t quite as open and carefree as the FreeBSD kernel is. The
basic idea of using kernel modules to get running code into the kernel
is same though and is the focus of these blog posts.

When I tried to apply what I'd learnt about FreeBSD to Linux, I found
quite a shortage of resources and had to put a lot of different things
together from many different sources. These blog posts serve to
hopefully set out what I've learnt about Linux kernel rootkit design
for anyone else hoping to learn more about how the kernel works!

The idea is that I'll start off with what a kernel rootkit is and the
workflow I used during development. Next, I'll describe the main
technique involved in hooking different kernel functions - Ftrace (it's
easier than it looks - don’t worry!). Once that’s out of the way, I'1ll

https://xcellerator.github.io/posts/linux_rootkits 01/

https://nostarch.com/rootkits.htm
https://nostarch.com/rootkits.htm
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://xcellerator.github.io/
https://xcellerator.github.io/categories/cryptography/
https://xcellerator.github.io/categories/linux/
https://xcellerator.github.io/categories/other/
https://xcellerator.github.io/categories/reverse_engineering/
https://xcellerator.github.io/posts/linux_rootkits_01/
https://xcellerator.github.io/tags/linux/
https://xcellerator.github.io/tags/rootkit/

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator
get into the actual techniques that kernel rootkits use: hiding
directories, ports and processes from the user, granting root
permissions and even hiding the rootkit’s presence altogether.

What is a Kernel Mode Rootkit?

So, what does a kernel rootkit actually do? Well, Wikipedia defines a
rootkit as:

“A rootkit is a collection of computer software, typically
malicious, designed to enable access to a computer or an area of
its software that is not otherwise allowed (for example, to an
unauthorized user) and often masks its existence or the existence
of other software.”

And of course, being a kernel rootkit means that the code we write will
run with kernel level privileges (ring 0) via the kernel modules that
we will write. This can be a double-edged sword: what we do is
invisible to the user and userspace tools, but if we mess something up,
we are likely to crash the system because the kernel can’t save us from
itself! This makes development in a VM a pretty hard requirement -
fortunately we'll be using Vagrant to keep the headaches to a minimum.

At a very high level, the main technique in kernel rootkits (and
userspace rookits too, but that’s another article) is function hooking.
Essentially, we take a function in memory that performs some action we
want to influence (listing directory contents, sending a signal to a
process, etc) and write our own version. Part of this process involves
saving a copy of the original function that we can still implement the
normal functionality without having to rewrite it. Then we have to find
a way to “inject” our new function into the kernel in such a way that
the kernel will continue to function “normally” (aka without any
outward signs to the user that something is up - like crashing!).

As you might imagine, being Linux, there is always more than one way to
skin a cat, and function hooking 1s no exception. The method that I am

https://xcellerator.github.io/posts/linux_rootkits 01/

https://en.wikipedia.org/wiki/Rootkit
https://www.vagrantup.com/
morgan

morgan

morgan

morgan

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator
going to focus on (as mentioned above) is called Ftrace, and is the
main subject of the next blog_post.

Workflow for Rootkit Development

That’s all well and good, but before we can go on to learning about the
precise ways of modifying kernel memory and how to write hook
functions, we need to get our workflow sorted.

As mentioned, the first thing we need is a VM. You're free to use
VirtualBox or something else your comfortable with, but during this
process I discovered Vagrant. If you’ve already got VirtualBox
installed, then Vagrant will automatically use it for virtualization
without any configuration needed.

Vagrant uses the current directory to store the configuration for the
current VM. If you need another VM, create a new directory and run
vagrant again! To give you an idea of how easy vagrant 1is:

vagrant init generic/ubuntu2004
vagrant up
vagrant ssh

And with that, I'm looking at a bash prompt in an Ubuntu 20.04 VM! Then
vagrant upload ~/.ssh and vagrant upload ~/.vimrc makes our lives
easier down the line.

Either way, once you're in your VM, you're gonna need a few things. I'm
going to base this tutorial on Ubuntu 20.04 (if you don’t use Ubuntu
then I'm sure you can figure out the changes to make). Make sure your
system is fully updated (including any kernel updates!), then go for
the usual apt update; apt install git build-essential linux-
headers-$(uname -r) (git is optional, but highly recommended!). Once
that's done, we can look at building a simple kernel module.

Building Kernel Modules

https://xcellerator.github.io/posts/linux_rootkits 01/

https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://xcellerator.github.io/posts/linux_rootkits_02/
https://www.vagrantup.com/
morgan

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator
Let's look at the following C code (it’s a good idea to get this into a
file because we are going to build it soon!).

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

MODULE _LICENSE("GPL");
MODULE_AUTHOR("TheXcellerator");
MODULE_DESCRIPTION("Basic Kernel Module");
MODULE_VERSION("0.01");

static int __init example_init(void)

{
printk(KERN_INFO "Hello, world!\n");
return 0;

static void __exit example_exit(void)

{
printk(KERN_INFO "Goodbye, world!\n");

module_init(example_init);
module_exit(example_exit);

This is about as simple as a kernel module can be - and we’'re going to
go through it line-by-line.

First off, we have a couple of #include 's that will always be
required, followed up by a few macros that bake in some details about
the what the module does. This information is made availabe by the
kernel when we load the module into memory later on.

Next we have two very important functions that will always be present.
The function 1s executed once the module is loaded, and
when it is unloaded. The final two lines declare to the

compiler the roles that example init and example exit have. (You can

https://xcellerator.github.io/posts/linux_rootkits 01/

morgan

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator
name these two functions whatever you want as long as you keep init
and _ _exit 1in their declarations and change those final two lines).

All these functions do (for now!) is printk() a string to the kernel
buffer (which you see the contents of using dmesg). This printk()

function is a lot like the more familiar printf() , except we always
start with a macro which defines the log level of the message

(see here for all the possible log levels). We'll pretty much always
use either KERN INFO or KERN DEBUG . Observe that this macro does not

belong in quotes like the rest of the string! We are also welcome to
use format strings in printk() just like in printf() which will be
our main method of pulling data out of the kernel when we’re debugging.

Okay, so that’s pretty simple, right? But how do we compile it? We use
the following Makefile:

obj-m example.o

all:
make -C /lib/modules/$(shell uname -r)/build M=%(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Assuming you've named the C source example.c (otherwise change
example.o on the top line to whatever else you've called it), then
simply running make will give you a bunch of new intermediate

binaries, but most importantly you’ll have a shiny new example.ko 1in
there.

This is your freshly built kernel module (the is for
kernel object)! To load it into your running kernel (please, always do
this on a VM until you’re certain everything works properly!), simply
run . Now, 1f you check dmesg , you should see a
“Hello, world!” 1line! To remove the kernel module, just run # rmmod
example (note that there’s no .ko when we unload a module), and
you'll see the goodbye message appear in the kernel buffer.

https://xcellerator.github.io/posts/linux_rootkits 01/

https://elinux.org/Debugging_by_printing#Log_Levels
morgan

morgan

morgan

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator

> You can find the source code for all this and more on my GitHub
repo xcellerator/linux_kernel hacking. Specifically, this basic
module 1s here.

Congratulations! You just built and loaded your first Linux kernel

module! Ofcourse, it didn’t actually do much, but that’s what the next
few blog posts are going to do. The plan for next time is to introduce
Ftrace, which is the tool we’'re going to use to hook kernel functions.

Anytime you build a Linux kernel module, it is specific to the
kernel version it was built on. If you try to take a module and
load 1t on a system with a different kernel, it will very likely
faily to load.

Now head on over to Part 2!

Until next time..

READ OTHER POSTS

¢ Coming soon! BootNoodle: A Palindromic Bo..

Harvey Phillips 2020 - London, England
Theme made by panr

this site 1s part of the HauNTed wEbriNg

https://xcellerator.github.io/posts/linux_rootkits 01/

https://xcellerator.github.io/posts/linux_rootkits_02
https://pixeldreams.tokyo/cgi-bin/webring.cgi
https://github.com/xcellerator/linux_kernel_hacking
https://github.com/xcellerator/linux_kernel_hacking/tree/master/0_Basic_LKMs/0.0_Basic
https://xcellerator.github.io/posts/check_back_soon/
https://xcellerator.github.io/posts/bggp/
https://twitter.com/panr

5/30/25, 8:19 PM Linux Rootkits Part 1: Introduction and Workflow :: TheXcellerator
<< RaNDom >>>

https://xcellerator.github.io/posts/linux_rootkits 01/

https://pixeldreams.tokyo/cgi-bin/webring.cgi?before=https://xcellerator.github.io/
https://pixeldreams.tokyo/cgi-bin/webring.cgi?random=https://xcellerator.github.io/
https://pixeldreams.tokyo/cgi-bin/webring.cgi?after=https://xcellerator.github.io/

